Statistical Learning

CS 486/686 Introduction to AI University of Waterloo

Motivation: Things you know

- Agents model uncertainty in the world and utility of different courses of actions
 - Bayes nets are models of probability distributions which involve a graph structure annotated with probabilities
 - Bayes nets for realistic applications have hundreds of nodes
- Where do these numbers come from?

Pathfinder

(Heckerman, 1991)

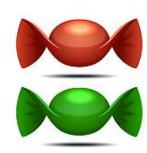
- Medical diagnosis for lymph node disease
- Large net
 - 60 diseases, 100 symptoms and test results, 14000 probabilities
- Built by medical experts
 - 8 hours to determine the variables
 - 35 hours for network topology
 - 40 hours for probability table values

Knowledge acquisition bottleneck

- In many applications, Bayes net structure and parameters are set by experts in the field
 - Experts are scarce and expensive, can be inconsistent or non-existent
- But data is cheap and plentiful (usually)
- Goal of learning:
 - Build models of the world directly from data
 - We will focus on learning models for probabilistic models

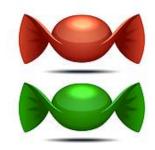
Candy Example (from R&N)

- Favourite candy sold in two flavours
 - Lime and Cherry
- Same wrapper for both flavours
- Sold in bags with different ratios
 - 100% cherry
 - 75% cherry, 25% lime
 - 50% cherry, 50% lime
 - 25% cherry, 75% lime
 - 100% lime



Candy Example

- You bought a bag of candy but do not know its flavour ratio
- After eating k candies
 - What is the flavour ratio of the bag?
 - What will be the flavour of the next candy?



Statistical Learning

- Hypothesis H: probabilistic theory about the world
 - h₁: 100% cherry
 - h₂: 75% cherry, 25% lime
 - h₃: 50% cherry, 50% lime
 - h_4 : 25% cherry, 75% lime
 - h₅: 100% lime
- Data D: evidence about the world

. . .

- d₁: 1st candy is cherry
- d₂: 2nd candy is lime
- d₃: 3rd candy is lime

Bayesian learning

- Prior: P(H)
- Likelihood: P(dIH)
- Evidence: $d = \langle d_1, d_2, \dots, d_n \rangle$
- Bayesian learning
 - Compute the probability of each hypothesis given the data
 - $P(HId)=\alpha P(dIH)P(H)$

Bayesian learning

 Suppose we want to make a prediction about some unknown quantity x (i.e. flavour of the next candy)

$$P(x|d) = \sum_{i} P(x|d, h_i) P(h_i|d)$$
$$= \sum_{i} P(x|h_i) P(h_i|d)$$

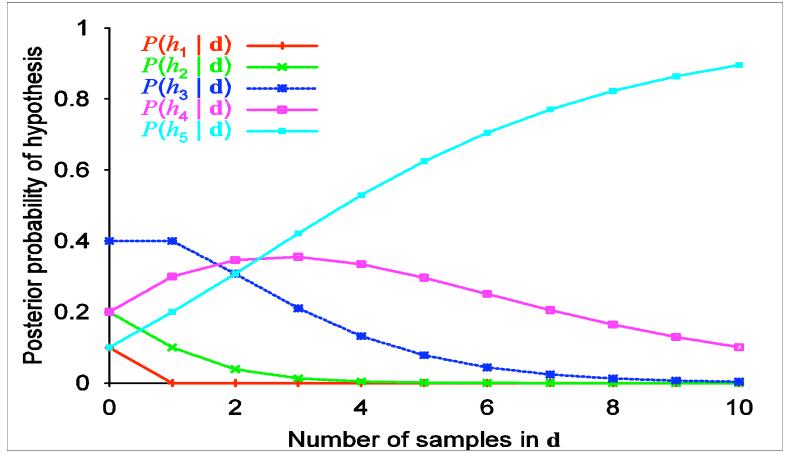
• Predictions are weighted averages of the predictions of the individual hypothesis

Candy Example

- Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>
- Assume candies are i.i.d: $P(d|h_i)=\Pi_j P(d_j|h_i)$
- Suppose first 10 candies are all lime
 - $P(dlh_1)=0^{10}=0$
 - $P(dlh_2)=0.25^{10}=0.0000095$
 - $P(dlh_3)=0.5^{10}=0.00097$
 - P(dlh₄)=0.75¹⁰=0.056
 - $P(dlh_5)=1^{10}=1$

Candy Example: Posterior

Posteriors given that data is really generated from h_5



Candy Example: Prediction

Prediction next candy is lime given that data is really generated from h₅ 0.9 0.5 0.4 2 4 6 8 10 0 Number of samples in d

Bayesian learning

Good News

Optimal: Given prior, no other prediction is correct more often than the Bayesian one

No Overfitting: Use the prior to penalize complex hypothesis (complex hypothesis are unlikely)

Bad News

Intractable: If hypothesis space is large

Solution

Approximations: Maximum a posteriori (MAP)

Maximum a posteriori (MAP)

Idea: Make prediction on the most probable hypothesis h_{MAP}

$$h_{\text{MAP}} = \arg \max_{h_i} P(h_i | d)$$
$$P(x | d) = P(x | h_{\text{MAP}})$$

Compare to Bayesian Learning which makes predictions on all hypothesis weighted by their probability

MAP – Candy Example

MAP Properties

- MAP prediction is less accurate than Bayesian prediction
 - MAP relies on only one hypothesis
- MAP and Bayesian predictions converge as data increases
- No overfitting
 - Use prior to penalize complex hypothesis
- Finding h_{MAP} may be intractable
 - h_{MAP}=argmax P(hld)
 - Optimization may be hard!

MAP computation

Optimization

$$h_{\text{MAP}} = \arg \max_{h} P(h|d)$$
$$= \arg \max_{h} P(h) P(d|h)$$
$$= \arg \max_{h} P(h) \prod_{i} P(d_{i}|h)$$

Product introduces nonlinear optimization

Take log to linearize $h_{\text{MAP}} = \arg \max_{h} \left[\log P(h) + \sum_{i} \log P(d_{i}|h) \right]$

Maximum Likelihood (ML)

 Idea: Simplify MAP by assuming uniform prior (i.e. P(h_i)=P(h_j) for all i,j)

$$h_{\text{MAP}} = \arg \max_{h} P(h) P(d|h)$$
$$h_{\text{ML}} = \arg \max_{h} P(d|h)$$

• Make prediction on h_{ML} only

ML Properties

- ML prediction is less accurate than Bayesian and MAP
- ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting
 - Does not penalize complex hypothesis
- Finding h_{ML} is often easier than h_{MAP}
 - h_{ML}=argmax_j∑_i log P(d_ilh_j)

Learning with complete data

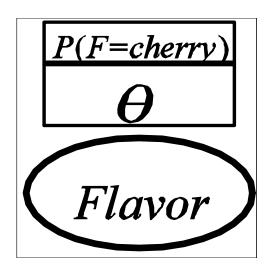
- Parameter learning with complete data
 - Parameter learning task involves finding numerical parameters for a probability model whose structure is fixed

• Example: Learning CPT for a Bayes net with a given structure

Simple ML Example

- Hypothesis h_θ
 - P(cherry)= θ and P(lime)=1- θ
 - θ is our parameter
- Data d:
 - N candies (c cherry and I=N-c lime)

What should θ be?



Simple ML example

Likelihood of this particular data set

$$P(d|h_{\theta}) = \theta^{c}(1-\theta)^{l}$$

Log Likelihood

$$L(d|h_{\theta}) = \log P(d|h_{\theta})$$
$$= c \log \theta + l \log(1 - \theta)$$

Simple ML example

• Find θ that maximizes log likelihood

$$\frac{\partial L(d|h_{\theta})}{\partial \theta} = \frac{c}{\theta} - \frac{l}{1-\theta} = 0$$
$$\theta = \frac{c}{c+l} = \frac{c}{N}$$

 ML hypothesis asserts that actual proportion of cherries is equal to observed proportion

More complex ML example

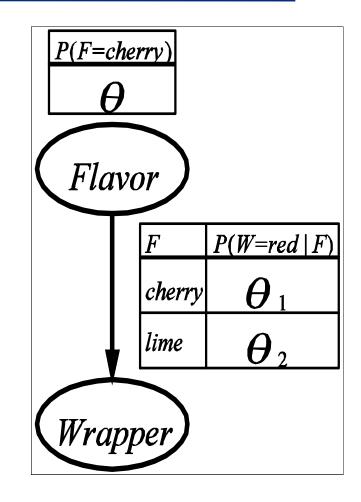
- Hypothesis: $h_{\theta, \theta_1, \theta_2}$
- Data:

c Cherries:

G_c green wrappers R_c red wrappers

I Limes:

G_I green wrappers R_I red wrappers



More complex ML example

$$P(d|h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^l \theta_1^{R_c} (1-\theta_1)^{G_c} \theta_2^{R_l} (1-\theta_2)^{G_l}$$

$$L(d|h_{\theta,\theta_1,\theta_2}) = [c \log \theta + l \log(1-\theta)] + [R_c \log \theta_1 + G_c \log(1-\theta)] + [R_l \log \theta_2 - G_l \log(1-\theta_2)]$$

More Complex ML

Optimize by taking partial derivatives and setting to zero

$$\theta = \frac{c}{c+l}$$
$$\theta_1 = \frac{R_c}{R_c + R_l}$$
$$\theta_2 = \frac{R_l}{R_l + R_G}$$

ML Comments

- This approach can be extended to any Bayes net
- With complete data
 - ML parameter learning problem decomposes into separate learning problems, one for each parameter!
 - Parameter values for a variable, given its parents are just observed frequencies of variable values for each setting of parent values!

A problem: Zero probabilities

- What happens if we observed zero cherry candies?
 - θ would be set to 0
 - Is this a good prediction?

Instead of
$$\theta = \frac{c}{c+l}$$
 use $\theta = \frac{c+1}{c+l+2}$

Laplace Smoothing

Given observations **x** from N trials

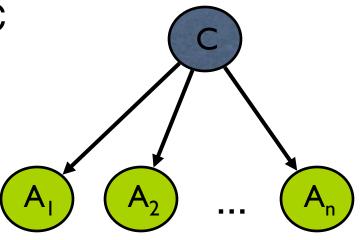
$$\mathbf{x} = (x_1, x_2, \dots, x_d)$$

Estimate parameters **θ**

$$\theta = (\theta_1, \theta_2, \dots, \theta_d)$$
$$\theta_i = \frac{x_i + \alpha}{N + \alpha d} \qquad \alpha > 0$$

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- Parameters:
 - $\theta = P(C = true)$
 - $\theta_{j,1} = P(A_j = true | C = true)$
 - $\theta_{j,2} = P(A_j = true | C = false)$
- Assumption: A_i's are independent given C



Naïve Bayes Model

- With observed attribute values x₁,x₂,...,x_n
 - $P(C|x_1,x_2,...,x_n) = \alpha P(C)\Pi_i P(x_i|C)$
- From ML we know what the parameters should be
 - Observed frequencies (with possible Laplace smoothing)
- Just need to choose the most likely class
 C

Naïve Bayes comments

- Naïve Bayes scales well
- Naïve Bayes tends to perform well
 - Even though the assumption that attributes are independent given class often does not hold
- Application
 - Text classification

Text classification

- Important practical problem, occurring in many applications
 - Information retrieval, spam filtering, news filtering, building web directories...
- Simplified problem description
 - **Given**: collection of documents, classified as "interesting" or "not interesting" by people
 - Goal: learn a classifier that can look at text of new documents and provide a label, without human intervention

Data representation

- Consider all possible significant words that can occur in documents
- Do not include stopwords
- Stem words: map words to their root
- For each root, introduce common binary feature
 - Specifying whether the word is present or not in the document

• "Machine learning is fun"

Use Naïve Bayes Assumption

• Words are independent of each other, given the class, y, of document

$$P(y|\text{document}) = \prod_{i=1}^{|\text{Vocab}|} P(w_i|y)$$

How do we get the probabilities?

Use Naïve Bayes Assumption

Use ML parameter estimation!

 $P(w_i|y) = \frac{\# \text{ documents of class } y \text{ containing word } w_i}{\# \text{ documents of class } y}$

- Count words over collections of documents
- Use Bayes rule to compute probabilities for unseen documents

Observations

- We may not be able to find θ analytically
- Gradient search to find good value of θ

$$\theta \leftarrow \theta + \alpha \frac{\partial L(\theta|d)}{\partial \theta}$$

Conclusions

- What you should know
 - Bayesian learning, MAP, ML
 - How to learn parameters in Bayes Nets
 - Naïve Bayes assumption
 - Laplace smoothing