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Motivation: Things you know

e Agents model uncertainty in the world
and utility of different courses of actions

- Bayes nets are models of probability
distributions which involve a graph structure
annotated with probabilities

- Bayes nets for realistic applications have
hundreds of nodes

e \Where do these numbers come from?



Pathfinder
(Heckerman, 1991)

e Medical diagnosis for lymph node
disease

e [arge net

- 60 diseases, 100 symptoms and test
results, 14000 probabilities

e Built by medical experts
- 8 hours to determine the variables
- 35 hours for network topology

- 40 hours for probability table values
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Knowledge acquisition bottleneck

¢ In many applications, Bayes net structure and
parameters are set by experts in the field

- Experts are scarce and expensive, can be
Inconsistent or non-existent

e But data is cheap and plentiful (usually)

e (oal of learning:
- Build models of the world directly from data

- We will focus on learning models for probabilistic
models



Candy Example o

Favourite candy sold in two flavours

Same wrapper for both flavours

Sold in bags with different ratios

Lime and Cherry

100% cherry

75% cherry, 25% lime
50% cherry, 50% lime
25% cherry, 75% lime
100% lime
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Candy Example

* You bought a bag of candy but do not
know its flavour ratio

e After eating k candies
- What is the flavour ratio of the bag?

- What will be the flavour of the next candy?




Statistical Learning

» Hypothesis H: probabilistic theory about the world
- h,: 100% cherry

: 75% cherry, 25% lime
: 50% cherry, 50% lime
: 25% cherry, 75% lime
: 100% lime

- h
- h
- h
- h,

e Data D: evidence about the world
- d,:1%candy is cherry
- d;2"candyis lime

- d,: 3" candy is lime



Bayesian learning

Prior: P(H)
Likelihood: P(dIH)
Evidence: d=<d1,d>,...,dn>

Bayesian learning

- Compute the probability of each hypothesis
given the data

- P(HId)=a P(dIH)P(H)



Bayesian learning

Suppose we want to make a prediction
about some unknown quantity x (i.e. flavour
of the next candy)

P(z|d) = meuh i|d)

Predictions arezweighted averages of the
predictions of the individual hypothesis



Candy Example

e Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>
e Assume candies are i.i.d: P(dlh;)=[T; P(djlhi)
e Suppose first 10 candies are all lime
- P(dlhy)=01=0
- P(dlh2)=0.251°=0.00000095
- P(dlh3)=0.510=0.00097
- P(dlh4)=0.7519=0.056
- P(dlhs)=110=1



Candy Example: Posterior

Posteriors given that data is really generated from hg
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Candy Example: Prediction

Prediction next candy is lime given that data is
, . really generated from h;
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Bayesian learning

Good News

Optimal: Given prior, no other prediction is correct more
often than the Bayesian one

No Overfitting: Use the prior to penalize complex
hypothesis (complex hypothesis are unlikely)

Bad News
Intractable: If hypothesis space is large

Solution
Approximations: Maximum a posteriori (MAP)
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Maximum a posteriori (MAP)

|dea: Make prediction on the most probable
hypothesis hmap
hMAp — arg H}laX P(hzld)
P(x|d) = P(x|hyap)

Compare to Bayesian Learning which makes
predictions on all hypothesis weighted by their
probability



MAP — Candy Example




MAP Properties

e MAP prediction is less accurate than Bayesian
prediction

- MAP relies on only one hypothesis

e MAP and Bayesian predictions converge as data
iIncreases

e No overfitting

- Use prior to penalize complex hypothesis
e Finding h,,,, may be intractable
- hyap=argmax P(hld)

- Optimization may be hard!
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MAP computation

Optimization
hvap = arg max P(h|d) Product
— arg max P(h) P(d|h) introduces

h nonlinear
= arg maxp H P(d;|h) optimization

Take log to linearize

hyvap = arg max log P(h) + z@: log P(d;|h)
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Maximum Likelihood (ML)

e |dea: Simplify MAP by assuming
uniform prior (i.e. P(hi))=P(h;) for all i)

hMAP — arg m}?X P(h)P(d’h)

hn, = arg max P(d|h)

e Make prediction on hy only
- P(xld)=P(xlhmL)



ML Properties

ML prediction is less accurate than Bayesian
and MAP

ML, MAP and Bayesian predictions converge
as data increases

Subject to overfitting
- Does not penalize complex hypothesis
Finding hue is often easier than huap
- hume=argmayx; i log P(dilh;)
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Learning with complete data

e Parameter learning with complete data

- Parameter learning task involves finding
numerical parameters for a probability
model whose structure is fixed

e Example: Learning CPT for a Bayes net
with a given structure
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Simple ML Example

P(F=cherry)
e Hypothesis he o
- P(cherry)=8 and P(lime)=1-6
- 0 is our parameter @

e Data d:

- N candies (c cherry and I=N-c lime)

e What should 6 be?
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Simple ML example

Likelihood of this particular data set

P(d|hg) = 6°(1 — 6)°

Log Likelihood

L(d|hg) = log P(d|h)
= clogd + llog(1 — @)
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Simple ML example

e Find B that maximizes log likelihood

o0 e 1—6
_ C — C
0 = c+Il — N

ML hypothesis asserts that actual proportion
of cherries is equal to observed proportion
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More complex ML example

e Hypothesis: h

0, 64, 05
e Data:

c Cherries:
Gc green wrappers
Rc red wrappers

| Limes:
G| green wrappers
Rired wrappers
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More complex ML example

P(d|hg0,,0,) = 0°(1 — 0)'07 (1 — 1) 705" (1 — 02)"

L(dlho,0,,0,) = [clog 0 + Llog(1 — 0)
+ [R.log 01 + G.log(1 — 0)]
-+ [Rl log 6)2 — Gl log(l — 92)]

25



More Complex ML

Optimize by taking partial derivatives and setting to zero

=
c+ [
R
0, — c
"7 R.+ R,
05 il

B R; + Rg



ML Comments

e This approach can be extended to any Bayes
net

o With complete data

ML parameter learning problem decomposes into
separate learning problems, one for each
parameter!

Parameter values for a variable, given its parents
are just observed frequencies of variable values
for each setting of parent values!
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A problem: Zero probabillities

e What happens if we observed zero cherry
candies?

B would be setto O

- Is this a good prediction?

C 0 _ c+1
¢+ 1 Use T e+ 1+2

Instead of 0 =
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Laplace Smoothing

Given observations x from N trials

X = (21,T2,...,Lq)

Estimate parameters 0

0= (01,0o,....04)

" N+ ad



Naive Bayes model

e \Want to predict a class C
based on attributes A,

e Parameters:
- 0 =P(C=true)
- 6, ;=P(A=truelC=true)
- 6, ,.=P(A=truelC=false)

e Assumption: A’s are
independent given C
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Naive Bayes Model

e With observed attribute values x1,xo,...,Xn
- P(CIx1,x2,...,xn)=a P(C)IN; P(xilC)

e From ML we know what the parameters
should be

- Observed frequencies (with possible Laplace
smoothing)

e Just need to choose the most likely class
C
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Naive Bayes comments

e Naive Bayes scales well

e Naive Bayes tends to perform well

- Even though the assumption that attributes
are independent given class often does not
hold

e Application

- Text classification
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Text classification

e Important practical problem, occurring in
many applications

- Information retrieval, spam filtering, news
filtering, building web directories...

e Simplified problem description

- Given: collection of documents, classified as
“Interesting” or “not interesting” by people

- Goal: learn a classifier that can look at text of
new documents and provide a label, without
human intervention
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Data representation

Consider all possible significant words that
can occur in documents

Do not include stopwords
Stem words: map words to their root

For each root, introduce common binary
feature

- Specifying whether the word is present or not in
the document
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Example

e “Machine learning is fun”



Use Naive Bayes Assumption

e Words are independent of each other,
given the class, y, of document

P(y|document) = H P(w;|y)
i=1

How do we get the probabilities?
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Use Naive Bayes Assumption

Use ML parameter estimation!

# documents of class y containing word w;

P i —
(wily) # documents of class y

e (Count words over collections of
documents

e Use Bayes rule to compute probabilities
for unseen documents
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Observations

e We may not be able to find O analytically

e (radient search to find good value of 0

AL(0]d)
00

0 < 0+ «
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Conclusions

e What you should know

Bayesian learning, MAP, ML
How to learn parameters in Bayes Nets
Naive Bayes assumption

Laplace smoothing
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