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Assessing Performance of a 
Learning Algorithm

• A learning algorithm is good if it produces 
a hypothesis that does a good job of 
predicting classifications of unseen 
examples

• There are theoretical guarantees (learning 
theory)

• Can also test this
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Assessing Performance of a 
Learning Algorithm

• Test set

- Collect a large set of examples

- Divide them into 2 disjoint sets: training 
set and test set

- Apply learning algorithm to the training 
set to get h

- Measure percentage of examples in the 
test set that are correctly classified by h
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Learning Curves
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As the 
training set 
grows, 
accuracy 
increases



Overfitting

• Why might a consistent hypothesis have a 
high error rate on a test set?

• Overfitting

• Finding patterns in the data where there is no 
actual pattern
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Overfitting
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Overfitting

• Given a hypothesis space H, a hypothesis h in H is said 
to overfit the training data if there exists some 
alternative hypothesis h’ in H such that h has smaller 
error than h’ on the training examples, but h’ has smaller 
error than h over the entire distribution of instances

- h in H overfits if there exists h’ in H such that 
errorTr(h)<errorTr(h’) but errorTe(h’)<errorTe(h)

• Overfitting has been found to decrease accuracy of 
decision trees by 10-25%
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Avoiding Overfitting
• Pruning

- Assume there is no pattern in the data (null hypothesis)
- Attribute is irrelevant and so info gain would be 0 for an infinitely large sample

- Compute probability that (under null hypothesis) a 
sample size p+n would exhibit observed deviation
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Overfitting
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Learning Curves
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No Peeking at the Test Set!

• A learning algorithm should not be 
allowed to see the test set data before 
the hypothesis is tested on it

- No Peeking!!

• Every time you want to compare 
performance of a hypothesis on a test 
set you should use a new test set!
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Cross Validation

• Split the training set into two parts, 
one for training and one for choosing 
the hypothesis with highest accuracy

- K-fold cross validation means you run k 
experiments, each time putting aside 1/k 
of the data to test on

- Leave-one-out cross validation
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Linear Threshold Classifiers
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Linear Threshold Classifiers
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Linear Threshold Classifiers
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hw(x) =

⇢
1 if w · x � 0

0 otherwise

Learning problem: 
Find weights, w, to 

minimize loss

Loss(hw) = L2(y, hw(x)) =

PN
j=1(yj � hw(xj))
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wi  wi + ↵(y � hw(x)) · xi
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Ensemble learning

• So far our learning methods have had the 
following general approach

- Choose a single hypothesis from the 
hypothesis space

- Use this hypothesis to make predictions

• Maybe we can do better by using a lot of 
hypothesis from the hypothesis space and 
combine their predictions
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Ensemble Learning

• Analogies
- Elections 

- Committees

• Intuitions:
- Individuals may make mistakes

- The majority may be less likely to make a mistake

- Individuals have partial information
- Committees pool expertise
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Ensemble expressiveness
• Using ensembles can also enlarge the 

hypothesis space

- Ensemble as hypothesis

- Set of all ensembles as hypothesis space

Original hypothesis space: linear 
threshold hypothesis 

•  Simple, efficient learning algorithms 
but not particularly expressive 
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Bagging

• Majority  voting:

h2

h1

h3

h4 h5

x
Majority(h1(x),h2(x),h3(x),h4(x),h5(x))

Ensemble of hypothesis

instance
classification

For the classification 
to be wrong, at least 3 

out of 5 hypothesis 
have to be wrong
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Bagging

• Assumptions:

- Each hi makes an error with probability p

- Hypotheses are independent

• Majority voting of n hypotheses

- Probability k make an error?

- Probability majority make an error?
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Weighted Majority

• In practice

- Hypotheses are rarely independent

- Some hypotheses have less errors 
than others

• Weighted majority

- Intuition
- Decrease weights of correlated hypotheses

- Increase weights of good hypotheses
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Boosting

• Boosting is the most commonly used form 
of ensemble learning

• Very simple idea, but very powerful

- Computes a weighted majority

- Operates on a weighted training set



23

Boosting

Training set
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Training set
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Boosting
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Boosting

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0  50  100  150  200

Tr
ai

ni
ng

/te
st 

ac
cu

ra
cy

Number of hypotheses K

Training error
Test error

Test set 
accuracy still 
improves slightly 
even after 
training accuracy 
is equal to 1



27

Boosting
• Many variations of boosting

- ADABOOST is a specific boosting algorithm

- Takes a weak learner L (classifies slightly better 
than just random guessing)

- Returns a hypothesis that classifies training 
data with 100% accuracy (for large enough M)

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
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Boosting Paradigm
• Advantages

- No need to learn a perfect hypothesis

- Can boost any weak learning algorithm

- Easy to program

- Good generalization

• When we have a bunch of hypotheses, 
boosting provides a principled approach to 
combine them

- Useful for sensor fusion, combining 
experts…


