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Assessing Performance of a
Learning Algorithm

¢ A learning algorithm is good if it produces
a hypothesis that does a good job of
predicting classifications of unseen
examples

* There are theoretical guarantees (learning
theory)

e (Can also test this



Assessing Performance of a

Learning Algorithm

o Test set

Collect a large set of examples

Divide them into 2 disjoint sets: training
set and test set

Apply learning algorithm to the training
settogeth

Measure percentage of examples in the
test set that are correctly classified by h



Learning Curves
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Overfitting

¢ \Why might a consistent hypothesis have a
high error rate on a test set?

e Qverfitting

e Finding patterns in the data where there is no
actual pattern



Overfitting
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Overfitting

e Given a hypothesis space H, a hypothesis h in H is said
to overfit the training data if there exists some
alternative hypothesis h’in H such that h has smaller
error than h’ on the training examples, but h’ has smaller
error than h over the entire distribution of instances

- hin H overfits if there exists h’in H such that
errorr(h)<errorr(h’) but errorwe(h’)<errorr(h)

e Overfitting has been found to decrease accuracy of
decision trees by 10-25%



Avoiding Overfitting

e Pruning

Assume there is no pattern in the data (null hypothesis)

- Attribute is irrelevant and so info gain would be 0 for an infinitely large sample

Compute probability that (under null hypothesis) a
sample size p+n would exhibit observed deviation

]31'=ppi+ni ﬁz‘:npi_l_ni

p+n p+n

v - 2 — 7 2

D=Z(pi Api) + (ni Ani)
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compare to x - table



Overfitting

Training Data f(x) Weather can be pruned

red [sunny| 3 0
blue |sunnv| 6 I
red |sunnv| | 0 [Weather]
__blue lsunny!l 6 I
red | rain 2 0 \
_blue | rain I 0
ﬁ :Z:: ; g No [ Colour ]
red | rain > 0
_blue | rain 4 0

N



Learning Curves

%o correct on test set

09

08

0.7

0.6

0.5 h

04

40 60
Training set size

80

100

As the
training set
grows,
accuracy
increases



No Peeking at the Test Set!

e A learning algorithm should not be
allowed to see the test set data before
the hypothesis is tested on it

= No Peeking!!

e Every time you want to compare
performance of a hypothesis on a test
set you should use a new test set!




Cross Validation

e Split the training set into two parts,
one for training and one for choosing
the hypothesis with highest accuracy

K-fold cross validation means you run k
experiments, each time putting aside 1/k
of the data to test on

Leave-one-out cross validation



Linear Threshold Classifiers

Imagine you have data of the form(x,f(x))
where x in A" and f(x)=0 or 1
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Linear Threshold Classifiers
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Ensemble learning

e So far our learning methods have had the
following general approach

- Choose a single hypothesis from the
hypothesis space

- Use this hypothesis to make predictions

e Maybe we can do better by using a lot of
hypothesis from the hypothesis space and
combine their predictions
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Ensemble Learning

e Analogies
- Elections

- Committees

e |ntuitions:

- Individuals may make mistakes

- The majority may be less likely to make a mistake

- Individuals have partial information

- Committees pool expertise

|17



Ensemble expressiveness

e Using ensembles can also enlarge the
hypothesis space

- Ensemble as hypothesis

Set of all ensembles as hypothesis space

Original hypothesis space: linear
threshold hypothesis < N,

- Simple, efficient learning algorithms "~ - - §V A

but not particularly expressive




Bagging

e Majority voting:

instance
classification

X
T Majority(h, (x)uhy(x).hy(x)uhy(x).hs ()

For the classification
to be wrong, at least 3
out of 5 hypothesis

Ensemble of hypothesis have to be wrong



Bagging

e Assumptions:

- Each h. makes an error with probability p

- Hypotheses are independent

e Majority voting of n hypotheses
- Probability k make an error?

- Probability majority make an error?
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Weighted Majority

e |n practice
- Hypotheses are rarely independent

- Some hypotheses have less errors
than others

e Weighted majority

- Intuition

- Decrease weights of correlated hypotheses

- Increase weights of good hypotheses

21



Boosting

e Boosting is the most commonly used form
of ensemble learning

e \Very simple idea, but very powerful
- Computes a weighted majority

- Operates on a weighted training set
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Boosting
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AdaBoost

function ADABOOST(examples, L, K) returns a weighted-majonty hypothesis
inputs: ezamples, set of N labeled examples (z1,v1),....(zNn,yN)
L, a learning algorithm
K, the number of hypotheses in the ensemble
local variables: w, a vector of N example weights, imtially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k=1to K do
h(k| — L(ezamples,w)
error +— 0
forj=1to N do
if h|k|(z;) # y; then error «— error + w/j]
for j=1to N do
if h|k|(z;) = y; then w[j] «— w[j]| - error/(1 — error)
w — NORMALIZE(w)
z[k] —log (1 — error)/error
return WEIGHTED-MAJORITY(h,z)




Boosting
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Boosting

Training/test accuracy
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Boosting

e Many variations of boosting
- ADABOOST is a specific boosting algorithm

- Takes a weak learner L (classifies slightly better
than just random guessing)

- Returns a hypothesis that classifies training
data with 100% accuracy (for large enough M)

-
»

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
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Boosting Paradigm

e Advantages
- No need to learn a perfect hypothesis
- Can boost any weak learning algorithm
- Easy to program
- Good generalization

e When we have a bunch of hypotheses,
boosting provides a principled approach to
combine them

Useful for sensor fusion, combining
experts...
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