Machine Learning

CS 486/686
Introduction to AI
University of Waterloo
Assessing Performance of a Learning Algorithm

- A learning algorithm is **good** if it produces a hypothesis that does a good job of predicting classifications of unseen examples
- There are theoretical guarantees (learning theory)
- Can also test this
Assessing Performance of a Learning Algorithm

• Test set
 - Collect a large set of examples
 - Divide them into 2 disjoint sets: training set and test set
 - Apply learning algorithm to the training set to get h
 - Measure percentage of examples in the test set that are correctly classified by h
Learning Curves

As the training set grows, accuracy increases.
Overfitting

- Why might a consistent hypothesis have a high error rate on a test set?

- Overfitting
 - Finding patterns in the data where there is no actual pattern
Overfitting

<table>
<thead>
<tr>
<th>Training Data</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red sunny</td>
<td>3 0</td>
</tr>
<tr>
<td>blue sunny</td>
<td>6 1</td>
</tr>
<tr>
<td>red sunny</td>
<td>1 0</td>
</tr>
<tr>
<td>blue sunny</td>
<td>6 1</td>
</tr>
<tr>
<td>red rain</td>
<td>2 0</td>
</tr>
<tr>
<td>blue rain</td>
<td>1 0</td>
</tr>
<tr>
<td>red rain</td>
<td>3 0</td>
</tr>
<tr>
<td>blue rain</td>
<td>2 0</td>
</tr>
<tr>
<td>red rain</td>
<td>5 0</td>
</tr>
<tr>
<td>blue rain</td>
<td>4 0</td>
</tr>
</tbody>
</table>

The diagram illustrates a decision tree model for predicting the function $f(x)$ based on weather and color.
Overfitting

- Given a hypothesis space H, a hypothesis h in H is said to overfit the training data if there exists some alternative hypothesis h' in H such that h has smaller error than h' on the training examples, but h' has smaller error than h over the entire distribution of instances.

 - h in H overfits if there exists h' in H such that $\text{error}_{Tr}(h) < \text{error}_{Tr}(h')$ but $\text{error}_{Te}(h') < \text{error}_{Te}(h)$

- Overfitting has been found to decrease accuracy of decision trees by 10-25%
Avoiding Overfitting

• Pruning

- Assume there is no pattern in the data (null hypothesis)
 - Attribute is irrelevant and so info gain would be 0 for an infinitely large sample

- Compute probability that (under null hypothesis) a sample size $p+n$ would exhibit observed deviation

\[
\hat{p}_i = p \frac{p_i + n_i}{p + n}, \quad \hat{n}_i = n \frac{p_i + n_i}{p + n}
\]

\[
D = \sum_{i=1}^{\nu} \frac{(p_i - \hat{p}_i)^2}{\hat{p}_i} + \frac{(n_i - \hat{n}_i)^2}{\hat{n}_i}
\]

compare to χ^2 table
Overfitting

<table>
<thead>
<tr>
<th>Training Data</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red sunny</td>
<td>3</td>
</tr>
<tr>
<td>blue sunny</td>
<td>6</td>
</tr>
<tr>
<td>red sunny</td>
<td>1</td>
</tr>
<tr>
<td>blue sunny</td>
<td>6</td>
</tr>
<tr>
<td>red rain</td>
<td>2</td>
</tr>
<tr>
<td>blue rain</td>
<td>1</td>
</tr>
<tr>
<td>red rain</td>
<td>3</td>
</tr>
<tr>
<td>blue rain</td>
<td>2</td>
</tr>
<tr>
<td>red rain</td>
<td>5</td>
</tr>
<tr>
<td>blue rain</td>
<td>4</td>
</tr>
</tbody>
</table>

Weather can be pruned
Learning Curves

As the training set grows, accuracy increases
No Peeking at the Test Set!

• A learning algorithm should not be allowed to see the test set data before the hypothesis is tested on it

 - No Peeking!!

• Every time you want to compare performance of a hypothesis on a test set you should use a new test set!
Cross Validation

- Split the training set into two parts, one for training and one for choosing the hypothesis with highest accuracy
 - K-fold cross validation means you run k experiments, each time putting aside 1/k of the data to test on
 - Leave-one-out cross validation
Imagine you have data of the form \((x, f(x))\) where \(x\) in \(\mathbb{R}^n\) and \(f(x) = 0\) or \(1\)
Linear Threshold Classifiers

\[h_w(x) = \begin{cases}
1 & \text{if } w \cdot x \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

\[w \cdot x = w_0 + w_1 x_1 + w_2 x_2 \]
Linear Threshold Classifiers

Learning problem:
Find weights, w, to minimize loss

$$h_w(x) = \begin{cases}
1 & \text{if } w \cdot x \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

Loss(h_w) = $L_2(y, h_w(x)) = \sum_{j=1}^{N} (y_j - h_w(x_j))^2$

$$w_i \leftarrow w_i + \alpha (y - h_w(x)) \cdot x_i$$
Ensemble learning

• So far our learning methods have had the following general approach
 - Choose a single hypothesis from the hypothesis space
 - Use this hypothesis to make predictions

• Maybe we can do better by using a lot of hypothesis from the hypothesis space and combine their predictions
Ensemble Learning

• Analogies
 - Elections
 - Committees

• Intuitions:
 - Individuals may make mistakes
 - The majority may be less likely to make a mistake
 - Individuals have partial information
 - Committees pool expertise
Ensemble expressiveness

- Using ensembles can also enlarge the hypothesis space
 - Ensemble as hypothesis
 - Set of all ensembles as hypothesis space

Original hypothesis space: linear threshold hypothesis

- Simple, efficient learning algorithms but not particularly expressive
Bagging

- **Majority voting:**

 $\text{Majority}(h_1(x), h_2(x), h_3(x), h_4(x), h_5(x))$

For the classification to be wrong, at least 3 out of 5 hypothesis have to be wrong.
Bagging

• Assumptions:
 - Each h_i makes an error with probability p
 - Hypotheses are independent

• Majority voting of n hypotheses
 - Probability k make an error?
 - Probability majority make an error?
Weighted Majority

- In practice
 - Hypotheses are rarely independent
 - Some hypotheses have less errors than others

- Weighted majority
 - Intuition
 - Decrease weights of correlated hypotheses
 - Increase weights of good hypotheses
• **Boosting** is the most commonly used form of ensemble learning

 • Very simple idea, but very powerful
 - Computes a weighted majority
 - Operates on a weighted training set
Boosting

Training set

\mathbf{h}_1

Training set

Increased the weights of the misclassified examples

Training set

Training set

\mathbf{h}_2
AdaBoost

function ADABooST(examples, L, K) returns a weighted-majority hypothesis
inputs: examples, set of N labeled examples \((x_1, y_1), \ldots, (x_N, y_N)\)
L, a learning algorithm
K, the number of hypotheses in the ensemble
local variables: w, a vector of N example weights, initially \(1/N\)
 h, a vector of K hypotheses
 z, a vector of K hypothesis weights

for \(k = 1\) to \(K\) do
 \(h[k] \leftarrow L(examples, w)\)
 error \(\leftarrow 0\)
 for \(j = 1\) to \(N\) do
 if \(h[k](x_j) \neq y_j\) then error \(\leftarrow error + w[j]\)
 for \(j = 1\) to \(N\) do
 if \(h[k](x_j) = y_j\) then \(w[j] \leftarrow w[j] \cdot error/(1 - error)\)
 \(w \leftarrow \text{normalize}(w)\)
 \(z[k] \leftarrow \log (1 - error)/error\)
return WEIGHTED-MAJORITY(h, z)
Boosting

Proportion correct on test set

Training set size

K=5

Boosted decision stumps
Decision stump
Boosting

Test set accuracy still improves slightly even after training accuracy is equal to 1.
Boosting

- Many variations of boosting
 - ADABOOST is a specific boosting algorithm
 - Takes a weak learner \(L \) (classifies slightly better than just random guessing)
 - Returns a hypothesis that classifies training data with 100% accuracy (for large enough \(M \))

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
Boosting Paradigm

• Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Easy to program
 - Good generalization

• When we have a bunch of hypotheses, boosting provides a principled approach to combine them
 - Useful for sensor fusion, combining experts…