Uncertainty

CS 486/686: Introduction to Artificial Intelligence Winter 2016

Introduction

Agents rarely have access to the full truth about their environment

- We are lazy
- Too much work to write down all antecedents and consequences
- Theoretical ignorance
- Sometimes there is no complete theory
- Practical ignorance
- Even if we knew all the rules, we might be uncertain about a particular instance (not enough information yet)

Probability to the Rescue

- Allows us to deal with uncertainty that comes from laziness or ignorance
- Clear semantics
- Provides principled answers for
- combining evidence, predictive and diagnostic reasoning, incorporation of new evidence
- Can be learned from data

Discrete Random Variables

- Random variable A describes an outcome that can not be determined in advance (ie. roll of a dice)
- Discrete random variable: possible values come from a countable domain (sample space)
- If X is the outcome of a dice throw then $X \in\{1,2,3,4,5,6\}$
- Boolean random variable: $A \in\{$ True, False $\}$
- A=The Canadian PM in 2040 will be male
- A=You have Ebola
- A=You wake up tomorrow with a headache

Events

- An event is a complete specification of the state of the world in which an agent is uncertain
- Subset of the sample space
- Example
- (Cavity=True)^(Toothache=True)
- Dice=2
- Events must be
- Mutually exclusive
- Exhaustive

Probabilities

- We let $P(A)$ denote the "degree of belief" we have that statement A is true
- "The fraction of possible worlds in which A is true"
- Note: P(A) DOES NOT correspond to a degree of truth

Visualizing A

Event space of all possible worlds.
It's area is 1

$$
P(A)=\text { Area of oval }
$$

Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- These axioms limit the class of functions that can be considered as probability functions

Interpreting the Axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

The area of A can't be smaller than 0

A zero area
would mean
no world could ever have A as true

Interpreting the Axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

The area of A can't be larger than 1

An area of 1
would mean
no world could ever have A as false

Interpreting the Axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Take the Axioms Seriously

- There have been attempts to use different methodologies for uncertainty
- Fuzzy logic
- Three-valued logic
- Dempster-Shafer
- ...
- But if you follow the axioms of probability then no one can take advantage of you :)

Theorems from the Axioms

- Thm: $P(\sim A)=1-P(A)$
- Proof: $P(A \vee \sim A)=P(A)+P(\sim A)-P\left(A^{\wedge} \sim A\right)$

$$
P(\text { True })=P(A)+P(\sim A)-P(\text { False })
$$

$$
1=P(A)+P(\sim A)-0
$$

$$
P(\sim A)=1-P(A)
$$

Multivalued Random Variables

- Assume domain of A (sample space) is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$
- A can take on exactly one value out of this set
- $P\left(A=v_{i}, A=v_{j}\right)=0$ if i not equal to j
- $P\left(A=v_{1}\right.$ or $A=v_{2}$ or \ldots or $\left.A=v_{k}\right)=1$

Useful Fact

- Given axioms of probability and $P\left(A=v_{i}, A=v_{j}\right)=0$ for $i \neq j$, and $P\left(A=v_{1}\right.$ or $A=v_{2}$ or \ldots or $\left.A=v_{k}\right)=1$ then
- $P\left(A=v_{1}\right.$ or $A=v_{2}$ or \ldots or $\left.A=v_{i}\right)=\sum_{j=1}{ }^{i} P\left(A=v_{j}\right)$
- $\quad \sum_{j=1} k P\left(A=v_{j}\right)=1$

Terminology

- Probability Distribution

- A specification of a probability for each event in the sample space
- Assume the world is described by two or more random variables
- Joint probability distribution
- Specification of probabilities for all combinations of events

Useful Fact

- Given axioms of probability and $P\left(A=v_{i}, A=v_{j}\right)=0$ for $i \neq j$, and $P\left(A=v_{1}\right.$ or $A=v_{2}$ or \ldots or $\left.A=v_{k}\right)=1$ then
- $P\left(B,\left(A=v_{1}\right.\right.$ or $A=v_{2}$ or \ldots or $\left.\left.A=v_{i}\right)\right)=\sum_{j=1} P(B$, $\mathrm{A}=\mathrm{V}_{\mathrm{j}}$)
- $\quad \sum_{j=1}{ }^{k} P\left(B, A=v_{j}\right)=1$

Marginalization

Example: Joint Distribution

sunny		
	cold	\sim cold
headache	0.108	0.012
\sim headache	0.016	0.064

| ~sunny | |
| :--- | :--- | :--- |
| cold \sim cold
 headache 0.072 0.008
 \sim headache 0.144 0.576 | |

$P($ headache^sunny^cold $)=0.108 P(\sim$ headache^sunny^~cold $)=0.064$
$P($ headache V sunny $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$
$P($ headache $)=0.108+0.012+0.072+0.008=0.2$
marginalization

Conditional Probability

- $P(A I B)$: fraction of worlds in which B is true that also have A true

$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

Headaches are rare and flu is rarer, but if you have the flu that there is a 50-50 chance you will have a headache

Conditional Probability

$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(H \mid F)=$ Fraction of flu inflicted worlds in which you have a headache
=(\# worlds with flu and headache)/
(\# worlds with flu)
= (Area of "H and F" region)/
(Area of "F" region)
$=P\left(H^{\wedge} F\right) / P(F)$

Headaches are rare and flu is rarer, but if you have the flu that there is a $50-50$ chance you will have a headache

Conditional Probability

- $P(A I B)=P(A \wedge B) / P(B)$
- Chain Rule:
- $P(A \wedge B)=P(A \mid B) P(B)$

Memorize these!

Conditional Probability

$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

Is your reasoning correct?

Conditional Probability

$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

$$
P(F \wedge H)=
$$

$P(F \mid H)=$

Example: Joint Distribution

sunny		
	cold	\sim cold
headache	0.108	0.012
\sim headache	0.016	0.064

~sunny

	cold	\sim cold
headache	0.072	0.008
~headache	0.144	0.576

$P($ headache ^ cold \mid sunny $)=P($ headache ^ cold ^ sunny) $/ P($ sunny $)$
$=0.108 /(0.108+0.012+0.016+0.064)$
$=0.54$
$P($ headache ^ cold $\mid \sim$ sunny $)=P($ headache ^ cold ^ ~sunny $) / P(\sim$ sunny $)$

$$
\begin{aligned}
& =0.072 /(0.072+0.008+0.144+0.576) \\
& =0.09
\end{aligned}
$$

Bayes Rule

- Note:
- $P(A \mid B) P(B)=P(A \wedge B)=P(B \wedge A)=P(B \mid A) P(A)$
- Bayes Rule:
- $P(B \mid A)=[P(A \mid B) P(B)] / P(A)$

Memorize this!

General Forms of Bayes Rule

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)} \\
& P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)} \\
& P\left(A=v_{i} \mid B\right)=\frac{P\left(B \mid A=v_{i}\right) P\left(A=v_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A=v_{k}\right) P\left(A=v_{k}\right)}
\end{aligned}
$$

Using Bayes Rule for Inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis \mathbf{H}, given evidence \mathbf{e}

Example

- A doctor knows that H1N1 causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10^{-7} chance of having H1N1. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about a fever. What is the probability that H1N1 is the cause of the fever?

Computing Conditional Probabilities

- Often we are interested in the posterior joint distribution of some query variable Y given specific evidence e for evidence variables E
- Hidden variables: X-Y-E
- If we had the joint prob. distribution then could marginalize
- $\mathrm{P}(\mathrm{YIE}=e)=a \sum \mathrm{~h} P(\mathrm{Y} \wedge(\mathrm{E}=e) \wedge(\mathrm{H}=\mathrm{h}))$

Computing Conditional Probabilities

- Often we are interested in the posterior joint distribution of some query variable Y given specific evidence e for evidence variables E
- Hidden variables: X-Y-E
- If we had the joint prob. distribution then could marginalize
- $P(Y \mid E=e)=a \sum_{h} P(Y \wedge(E=e) \wedge(H=h))$

Problem: Joint distribution is usually too big to handle

Independence

- Two variables A and B are independent if knowledge of A does not change uncertainty of B (and vice versa)
- $P(A I B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A \wedge B)=P(A) P(B)$
- In general: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$

Conditional Independence

- Full independence is often too strong a requirement
- Two variables A and B are conditionally independent given C if
- $P(a l b, c)=P(a l c)$ for all a, b, c
- i.e. knowing the value of B does not change the prediction of A if the value of C is known

Conditional Independence

- Diagnosis problem
- $\mathrm{Fl}=\mathrm{Flu}, \mathrm{Fv}=F e v e r, \mathrm{C}=\mathrm{Cough}$
- Full joint dist. has $2^{3}-1=7$ independent entries
- If someone has the flu, we can assume that the probability of a cough does not depend on having a fever ($\mathrm{P}(\mathrm{C} \mid \mathrm{FI}, \mathrm{Fv})=\mathrm{P}(\mathrm{C} \mid \mathrm{FI})$)
- If the same condition holds if the patient does not have the Flu then C and Fv are conditionally independent given $\mathrm{FL}(\mathrm{P}(\mathrm{C} \mid \sim \mathrm{Fl}, \mathrm{Fv})=\mathrm{P}(\mathrm{C} \mid \sim \mathrm{FI})$)

Conditional Independence

- Full distribution can be written as

$$
\begin{aligned}
P(C, F l, F C) & =P(C, F v \mid F l) P(F l) \\
& =P(C \mid F l) P(F v \mid F l) P(F l)
\end{aligned}
$$

- We only need 5 numbers!
- Huge savings if there are lots of variables

Conditional Independence

- Such a probability distribution is sometimes called a Naive Bayes model
- In practice they work well - even when the independence assumption is not true

Summary

- What you must know
- Basic definitions and axioms
- Marginalization
- Conditional Probabilities
- Chain Rule and Bayes Rule
- Independence and Conditional Independence

