
Markov Decision
Processes

CS 486/686: Introduction to Artificial Intelligence
Winter 2016

1

Outline

• Markov Chains

• Discounted Rewards

• Markov Decision Processes

- Value Iteration

- Policy Iteration

2

Markov Chains
• Simplified version of snakes and

ladders

• Start at state 0, roll dice, and move the
number of positions indicated on the
dice. If you land on square 4 you
teleport to square 7

• Winner is the one who gets to 11 first

3

11 10 9 8 7 6
0 1 2 3 4 5

Markov Chain
• Discrete clock pacing interaction of agent with environment,

t=0,1,2,...

• Agent can be in one of a set of states S={0,1,...,11}

• Initial state s0=0

• If an agent is in state st at time t, the state at time st+1 is
determined only by the role of the dice at time t

4

11 10 9 8 7 6
0 1 2 3 4 5

Markov Chain
• The probability of the next state st+1 does not depend on how the

agent got to the current state st (Markov Property)

• Example: Assume at time t, agent is in state 2

- P(st+1=3|st)=1/6

- P(st+1=7|st)=1/3

- P(st+1=5|st)=1/6, P(st+1=6|st)=1/6, P(st+1=8|st)=1/6

- Game is completely described by the probability distribution of the next
state given the current state

5

11 10 9 8 7 6
0 1 2 3 4 5

Markov Chain: Formal
Representation

• State space S={0,1,2,3,4,5,6,7,8,9,10,11}

• Transition probability matrix P

6

P =

Pij=Prob(Next=sj| This=si)

Discounted Rewards

• An assistant professor gets paid, say,
30K per year

• How much, in total, will the assistant
professor earn in their lifetime?

7

30+30+30+30+…=

Discounted Rewards
• A reward in the future is not worth quite as much as a

reward now

- Because of chance of inflation

- Because of chance of obliteration

• Example:

- Being promised $10000 next year is worth only 90% as
much as receiving $10000 now

• Assuming payment n years in the future is worth only
(0.9)n of payment now, what is the assistant
professor’s Future Discounted Sum of Rewards?

8

Discount Factors

• Used in economics and probabilistic
decision-making all the time

• Discounted sum of future awards using
discount factor γ is

- Reward now + γ(reward in 1 time step) +
γ2(reward in 2 time steps) + γ3(reward in 3
time steps) + ...

9

The Academic Life

• UA=Expected discounted future rewards starting in state A

• UB=Expected discounted future rewards starting in state B

• UF=Expected discounted future rewards starting in state F

• US=Expected discounted future rewards starting in state S

• UD=Expected discounted future rewards starting in state D

10

A
Assistant
Professor

30

B
Associate
Professor

60

F
Full

Professor
100S

Out on
The Street

10

D
Dead

0

0.6 0.2

0.2
0.2

0.2

0.30.3
0.7

0.7 0.6

Assume Discount
Factor γ = 0.9

Markov System of Rewards

• Set of states S={s1,s2,...,sn}

• Each state has a reward {r1,r2,...,rn}

• Discount factor γ, 0<γ<1

• Transition probability matrix, P

11

Pij = Prob(Next = sj ｜ This = si)

On each step:
•Assume state is si

•Get reward ri

•Randomly move to state sj with probability Pij

•All future rewards are discounted by γ

Solving a Markov Process

• Write U*(si) = expected discounted sum
of future rewards starting at state si

- U*(si)=ri+γ(Pi1U*(si)+Pi2U*(s2)+...+PinU*(sn))

12

Closed form: U=(I-γP)-1R

Solving a Markov System using
Matrix Inversion

• Upside:

- You get an exact number!

• Downside:

- If you have n states you are solving an n by
n system of equations!

13

Value Iteration
• Define

- U1(si)=Expected discounted sum of rewards over next 1
time step

- U2(si)=Expected discounted sum of rewards over next 2
time steps

- U3(si)=Expected discounted sum of rewards over next 3
time steps

- ...

- Uk(si)=Expected discounted sum of rewards over next k
time steps

14

Value Iteration
• Define

- U
1
(si)=Expected discounted sum of rewards over next 1 time step

- U
2
(si)=Expected discounted sum of rewards over next 2 time steps

- U
3
(si)=Expected discounted sum of rewards over next 3 time steps

- ...

- U
k
(si)=Expected discounted sum of rewards over next k time steps

15

U1(Si)=ri

U2(Si)=ri+γΣj=1
n pijU1(sj)

Uk+1(Si)=ri+γΣj=1
n pijUk(sj)

Example: Value Iteration

16

k Uk(sun) Uk(wind) Uk(hail)

1

2

3

4

5

Value Iteration
• Compute U1(si) for each i

• Compute U2(si) for each i

• Compute Uk(si) for each i

• As k→∞, Uk(si)→U*(si)

• When to stop?

- max |Uk+1(si)-Uk(si)|<ε

• This is often faster than matrix inversion

17

Markov Decision Process

18

γ = 0.9

You own a
company

In every state
you must
choose between
Saving money or
Advertising

Markov Decision Process
• Set of states S={s1,s2,...,sn}

• Each state has a reward {r1,r2,...,rn}

• Set of actions {a1,...,am}

• Discount factor γ, 0<γ<1

• Transition probability function , P

19

Pij
k= Prob(Next = sj ｜ This = si and you took action ak)

On each step:
•Assume state is si

•Get reward ri

•Choose action ak

•Randomly move to state sj with probability Pijk

•All future rewards are discounted by γ

Planning in MDPs
• The goal of an agent in an MDP is to be

rational

- Maximize its expected utility

- But maximizing immediate utility is not good
enough
- Great action now can lead to certain death tomorrow

• Goal is to maximize its long term reward

- Do this by finding a policy that has high return

20

Policies

• A policy is a mapping
from states to actions

21

ARF
SRU
APF
SPU

Policy 1

ARF
ARU
APF
APU

Policy 2

Fact

• For every MDP there exists an optimal
policy

• It is the policy such that for every
possible start state, there is no better
option that to follow the policy

22

Our goal: To find this policy!

Finding the Optimal Policy

• Naive approach:

- Run through all possible policies and select
the best

23

Optimal Value Function

• Define V*(si) to be the expected
discounted future rewards

- Starting from state si, assuming we use the
optimal policy

• Define Vt(si) to be the possible sum of
discounted rewards I can get if I start at
state si and live for t time steps

- Note: V1(si)=ri

24

Example

25

γ = 0.9

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1 0 0 10 10

2 0 4.5 14.5 19

3 2.03 8.55 16.53 25.08

4 4.76 12.20 18.35 28.72

5 7.63 15.07 20.40 31.18

6 10.22 17.46 22.61 33.21

Bellman’s Equation

• Now we can do Value Iteration!

- Compute V1(si) for all i

- Compute V2(si) for all i

- ...

- Compute Vt(si) for all i

- Until convergence maxi|Vt+1(si)-Vt(si)|<ε

26

Vt+1(si)=maxk [ri+γΣj=1
n Pij

k Vt(sj)]

aka Dynamic Programming

Finding the Optimal Policy

• Compute V*(si) for all i using value
iteration

• Define the best action in state si as

27

argmaxk[ri+γ∑jPijk V*(sj)]

Policy Iteration

There are other ways of finding the optimal
policy

• Policy Iteration

- Alternates between two steps
- Policy evaluation: Given π, compute Vi=Vπ

- Policy improvement: Calculate a new πi+1 using 1-step
lookahead

28

Policy Iteration Algorithm

• Start with random policy π

• Repeat until you stop changing the policy

- Compute long term reward for each si, using π

- For each state si

29

If

max
k

�

⇤ri + �
⇧

j

P k
i,jV

�(sj)

⇥

⌅ > ri + �
⇧

j

P�(si)
i,j V �(sj)

Then

⇥(si)� arg max
k

�

⇤ri + �
⇧

j

P k
i,jV

�(sj)

⇥

⌅

Summary

• MDPs describe planning tasks in stochastic
worlds

• Goal of the agent is to maximize its expected
return

• Value functions estimate the expected return

• In finite MDPs there is a unique optimal policy

- Dynamic programing can be used to find it

30

Summary
• Good news

- finding optimal policy is polynomial in number of states

• Bad news

- finding optimal policy is polynomial in number of states

• Number of states tends to be very very large

- exponential in number of state variables

• In practice, can handle problems with up to 10
million states

31

Extensions
• In “real life” agents may not know what state they are in

- Partial observability

• Partially Observable MDPs (POMDPs)

- Set of states

- Set of actions

- Each state has a reward

- Transition probability function P(st|at-1,st-1)

- Set of observations O={o1,...,ok}

- Observation model P(ot|st)

32

POMDPs

• Agent maintains a belief state, b

- Probability distribution over all possible states

- b(s) is the probability assigned to state s

• Insight: optimal action depends only on
agent’s current belief state

- Policy is a mapping from belief states to
actions

33

POMDPs
• Decision cycle of an agent

- Given current b, execute action a=π*(b)

- Receive observation o

- Update current belief state
- b’(s’)=αO(o|s’)ΣsP(s’|a,s)b(s)

• Possible to write a POMDP as an MDP by
summing over all actual states s’ that an agent
might reach

- P(b’|a,b)=ΣoP(b’|o,a,b)Σs’O(o|s’)ΣsP(s’|a,s)b(s)

34

POMDPs

• Complications

- Our (new) MDP has a continuous state
space

- In general, finding (approximately) optimal
policies is difficult (PSPACE-hard)

- Problems with even a few dozen states are
often infeasible
- New techniques, take advantage of structure,....

35

