Markov Decision Processes

CS 486/686: Introduction to Artificial Intelligence
Winter 2016
Outline

- Markov Chains
- Discounted Rewards
- Markov Decision Processes
 - Value Iteration
 - Policy Iteration
Markov Chains

- Simplified version of snakes and ladders
- Start at state 0, roll dice, and move the number of positions indicated on the dice. If you land on square 4 you teleport to square 7
- Winner is the one who gets to 11 first
Markov Chain

- Discrete clock pacing interaction of agent with environment, $t=0,1,2,...$
- Agent can be in one of a set of states $S=\{0,1,...,11\}$
- Initial state $s_0=0$
- If an agent is in state s_t at time t, the state at time s_{t+1} is determined only by the role of the dice at time t

\[
\begin{array}{ccccccc}
11 & 10 & 9 & 8 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
Markov Chain

- The probability of the next state s_{t+1} does not depend on how the agent got to the current state s_t (Markov Property)

- Example: Assume at time t, agent is in state 2
 - $P(s_{t+1}=3|s_t)=1/6$
 - $P(s_{t+1}=7|s_t)=1/3$
 - $P(s_{t+1}=5|s_t)=1/6$, $P(s_{t+1}=6|s_t)=1/6$, $P(s_{t+1}=8|s_t)=1/6$
 - Game is completely described by the probability distribution of the next state given the current state

\[
\begin{array}{ccccccc}
11 & 10 & 9 & 8 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5
\end{array}
\]
Markov Chain: Formal Representation

- State space $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
- Transition probability matrix P

$$P = \begin{bmatrix}
0 & 1/6 & 1/6 & 1/6 & 0 & 1/6 & 1/6 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1/6 & 1/6 & 0 & 1/6 & 1/6 & 1/3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/6 & 0 & 1/6 & 1/6 & 1/3 & 1/6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/6 & 1/6 & 1/3 & 1/6 & 1/6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/6 & 1/6 & 1/6 & 1/6 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/6 & 1/6 & 1/6 & 1/2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/6 & 1/6 & 2/3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/6 & 5/6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$p_{ij} = \text{Prob(Next}= s_j | \text{This}= s_i)$
An assistant professor gets paid, say, 30K per year

How much, in total, will the assistant professor earn in their lifetime?

\[30 + 30 + 30 + 30 + \ldots = \]
Discounted Rewards

• A reward in the future is not worth quite as much as a reward now
 - Because of chance of inflation
 - Because of chance of obliteration

• Example:
 - Being promised $10000 next year is worth only 90% as much as receiving $10000 now

• Assuming payment n years in the future is worth only \((0.9)^n\) of payment now, what is the assistant professor’s Future Discounted Sum of Rewards?
Discount Factors

• Used in economics and probabilistic decision-making all the time

• **Discounted sum of future awards** using discount factor γ is

 - $\text{Reward now} + \gamma(\text{reward in 1 time step}) + \gamma^2(\text{reward in 2 time steps}) + \gamma^3(\text{reward in 3 time steps}) + \ldots$
The Academic Life

- $U_A =$ Expected discounted future rewards starting in state A
- $U_B =$ Expected discounted future rewards starting in state B
- $U_F =$ Expected discounted future rewards starting in state F
- $U_S =$ Expected discounted future rewards starting in state S
- $U_D =$ Expected discounted future rewards starting in state D
Markov System of Rewards

- Set of states $S = \{s_1, s_2, \ldots, s_n\}$
- Each state has a reward $\{r_1, r_2, \ldots, r_n\}$
- Discount factor γ, $0 < \gamma < 1$
- Transition probability matrix, P

$$P = \begin{bmatrix}
P_{11} & P_{12} & \cdots & P_{1n} \\
P_{21} & P_{22} & \cdots & P_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
P_{n1} & P_{n2} & \cdots & P_{nn}
\end{bmatrix}$$

$P_{ij} = \text{Prob(Next = } s_j \mid \text{This = } s_i)$

On each step:
- Assume state is s_i
- Get reward r_i
- Randomly move to state s_j with probability P_{ij}
- All future rewards are discounted by γ
Solving a Markov Process

- Write \(U^*(s_i) = \text{expected discounted sum of future rewards starting at state } s_i \)

\[
U^*(s_i) = r_i + \gamma (P_{i1}U^*(s_i) + P_{i2}U^*(s_2) + \ldots + P_{in}U^*(s_n))
\]

Closed form: \(U = (I - \gamma P)^{-1} R \)
Solving a Markov System using Matrix Inversion

- **Upside:**
 - You get an exact number!

- **Downside:**
 - If you have \(n \) states you are solving an \(n \) by \(n \) system of equations!
Value Iteration

- Define
 - $U^1(s_i)$ = Expected discounted sum of rewards over next 1 time step
 - $U^2(s_i)$ = Expected discounted sum of rewards over next 2 time steps
 - $U^3(s_i)$ = Expected discounted sum of rewards over next 3 time steps
 - ...
 - $U^k(s_i)$ = Expected discounted sum of rewards over next k time steps
Value Iteration

- Define
 - $U_1^1(s_i)$=Expected discounted sum of rewards over next 1 time step
 - $U_2^2(s_i)$=Expected discounted sum of rewards over next 2 time steps
 - $U_3^3(s_i)$=Expected discounted sum of rewards over next 3 time steps
 - \ldots
 - $U_k^k(s_i)$=Expected discounted sum of rewards over next k time steps

\[
\begin{align*}
U_1^1(S_i) &= r_i \\
U_2^2(S_i) &= r_i + \gamma \sum_{j=1}^{n} p_{ij} U_1^1(s_j) \\
U_{k+1}^{k+1}(S_i) &= r_i + \gamma \sum_{j=1}^{n} p_{ij} U_k^k(s_j)
\end{align*}
\]
Example: Value Iteration

<table>
<thead>
<tr>
<th>k</th>
<th>$U^k($sun$)$</th>
<th>$U^k($wind$)$</th>
<th>$U^k($hail$)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Value Iteration

• Compute $U^1(s_i)$ for each i
• Compute $U^2(s_i)$ for each i
• Compute $U^k(s_i)$ for each i
• As $k \to \infty$, $U^k(s_i) \to U^*(s_i)$
• When to stop?
 - $\max |U^{k+1}(s_i) - U^k(s_i)| < \epsilon$

• This is often faster than matrix inversion
You own a company.

In every state you must choose between saving money or advertising.

\[\gamma = 0.9 \]
Markov Decision Process

- Set of states $S=\{s_1, s_2, ..., s_n\}$
- Each state has a reward $\{r_1, r_2, ..., r_n\}$
- **Set of actions** $\{a_1, ..., a_m\}$
- Discount factor γ, $0 < \gamma < 1$
- Transition probability function, P

\[
P_{ij}^k = \text{Prob}(\text{Next} = s_j \mid \text{This} = s_i \text{ and you took action } a_k)
\]

On each step:
- Assume state is s_i
- Get reward r_i
- Choose action a_k
- Randomly move to state s_j with probability P_{ij}^k
- All future rewards are discounted by γ
Planning in MDPs

• The goal of an agent in an MDP is to be rational
 - Maximize its expected utility
 - But maximizing immediate utility is not good enough
 - Great action now can lead to certain death tomorrow

• Goal is to maximize its long term reward
 - Do this by finding a policy that has high return
Policies

- A policy is a mapping from states to actions

<table>
<thead>
<tr>
<th>Policy 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>S</td>
</tr>
<tr>
<td>PF</td>
<td>A</td>
</tr>
<tr>
<td>RU</td>
<td>S</td>
</tr>
<tr>
<td>RF</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>A</td>
</tr>
<tr>
<td>PF</td>
<td>A</td>
</tr>
<tr>
<td>RU</td>
<td>A</td>
</tr>
<tr>
<td>RF</td>
<td>A</td>
</tr>
</tbody>
</table>
Fact

- For every MDP there exists an optimal policy
- It is the policy such that for every possible start state, there is no better option that to follow the policy

Our goal: To find this policy!
Finding the Optimal Policy

- Naive approach:
 - Run through all possible policies and select the best
Optimal Value Function

- Define $V^*(s_i)$ to be the **expected discounted future rewards**
 - Starting from state s_i, assuming we use the optimal policy

- Define $V^t(s_i)$ to be the possible sum of discounted rewards I can get if I start at state s_i and live for t time steps
 - Note: $V^1(s_i) = r_i$
Example

\[\gamma = 0.9 \]

<table>
<thead>
<tr>
<th>t</th>
<th>(V_t(\text{PU}))</th>
<th>(V_t(\text{PF}))</th>
<th>(V_t(\text{RU}))</th>
<th>(V_t(\text{RF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.5</td>
<td>14.5</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>2.03</td>
<td>8.55</td>
<td>16.53</td>
<td>25.08</td>
</tr>
<tr>
<td>4</td>
<td>4.76</td>
<td>12.20</td>
<td>18.35</td>
<td>28.72</td>
</tr>
<tr>
<td>5</td>
<td>7.63</td>
<td>15.07</td>
<td>20.40</td>
<td>31.18</td>
</tr>
<tr>
<td>6</td>
<td>10.22</td>
<td>17.46</td>
<td>22.61</td>
<td>33.21</td>
</tr>
</tbody>
</table>
Bellman’s Equation

\[V^{t+1}(s_i) = \max_k \left[r_i + \gamma \sum_{j=1}^{n} P_{ij}^k V^t(s_j) \right] \]

- Now we can do Value Iteration!
 - Compute \(V^1(s_i) \) for all \(i \)
 - Compute \(V^2(s_i) \) for all \(i \)
 - ...
 - Compute \(V^t(s_i) \) for all \(i \)
 - Until convergence \(\max_i |V^{t+1}(s_i) - V^t(s_i)| < \varepsilon \)

aka Dynamic Programming
Finding the Optimal Policy

• Compute $V^*(s_i)$ for all i using value iteration

• Define the best action in state s_i as

$$\text{argmax}_k [r_i + \gamma \sum_j P_{ij}^k V^*(s_j)]$$
Policy Iteration

There are other ways of finding the optimal policy

- **Policy Iteration**
 - Alternates between two steps
 - **Policy evaluation**: Given π, compute $V_i = V^\pi$
 - **Policy improvement**: Calculate a new π_{i+1} using 1-step lookahead
Policy Iteration Algorithm

• Start with random policy π

• Repeat until you stop changing the policy
 - Compute long term reward for each s_i, using π
 - For each state s_i

If

$$\max_k \left[r_i + \gamma \sum_j P_{i,j}^k V^*(s_j) \right] > r_i + \gamma \sum_j P_{i,j}^{\pi(s_i)} V^*(s_j)$$

Then

$$\pi(s_i) \leftarrow \arg \max_k \left[r_i + \gamma \sum_j P_{i,j}^k V^*(s_j) \right]$$
Summary

- MDPs describe planning tasks in stochastic worlds
- Goal of the agent is to maximize its expected return
- Value functions estimate the expected return
- In finite MDPs there is a unique optimal policy
 - Dynamic programing can be used to find it
Summary

- **Good news**
 - finding optimal policy is polynomial in number of states

- **Bad news**
 - finding optimal policy is polynomial in number of states

- **Number of states tends to be very very large**
 - exponential in number of state variables

- **In practice, can handle problems with up to 10 million states**
Extensions

- In “real life” agents may not know what state they are in
 - Partial observability

- Partially Observable MDPs (POMDPs)
 - Set of states
 - Set of actions
 - Each state has a reward
 - Transition probability function $P(s_t|a_{t-1},s_{t-1})$
 - Set of observations $O=\{o_1,\ldots,o_k\}$
 - Observation model $P(o_t|s_t)$
POMDPs

- Agent maintains a belief state, b
 - Probability distribution over all possible states
 - $b(s)$ is the probability assigned to state s

- Insight: optimal action depends only on agent’s current belief state
 - Policy is a mapping from belief states to actions
POMDPs

• Decision cycle of an agent
 - Given current belief state b, execute action $a = \pi^*(b)$
 - Receive observation o
 - Update current belief state
 - $b'(s') = \alpha O(o|s') \sum_s P(s'|a,s) b(s)$

• Possible to write a POMDP as an MDP by summing over all actual states s' that an agent might reach
 - $P(b'|a,b) = \sum_o P(b'|o,a,b) \sum_{s'} O(o|s') \sum_s P(s'|a,s) b(s)$
POMDPs

- Complications
 - Our (new) MDP has a continuous state space
 - In general, finding (approximately) optimal policies is difficult (PSPACE-hard)
 - Problems with even a few dozen states are often infeasible
 - New techniques, take advantage of structure,....