Markov Decision Processes

CS 486/686: Introduction to Artificial Intelligence Winter 2016

Outline

- Markov Chains
- Discounted Rewards
- Markov Decision Processes
- Value Iteration
- Policy Iteration

Markov Chains

- Simplified version of snakes and ladders
- Start at state 0 , roll dice, and move the number of positions indicated on the dice. If you land on square 4 you teleport to square 7
- Winner is the one who gets to 11 first

11	10	9	8	$7 \uparrow$	6
0	1	2	3	4	5

Markov Chain

- Discrete clock pacing interaction of agent with environment, $t=0,1,2, \ldots$
- Agent can be in one of a set of states $S=\{0,1, \ldots, 11\}$
- Initial state $\mathrm{s}_{0}=0$
- If an agent is in state st at time t, the state at time s_{t+1} is determined only by the role of the dice at time t

11	10	9	8	74	6
0	1	2	3	4	5

Markov Chain

- The probability of the next state s_{t+1} does not depend on how the agent got to the current state s_{t} (Markov Property)
- Example: Assume at time t, agent is in state 2
- $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=3 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6$
- $P\left(s_{t+1}=7 \mathrm{~s}_{\mathrm{t}}\right)=1 / 3$
- $P\left(s_{t+1}=5 s_{\mathrm{s}_{\mathrm{t}}}\right)=1 / 6, P\left(\mathrm{~s}_{\mathrm{t}+1}=6 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6, \mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=8 \mathrm{~s} \mathrm{~s}_{\mathrm{t}}\right)=1 / 6$
- Game is completely described by the probability distribution of the next state given the current state

11	10	9	8	74	6
0	1	2	3	4	5

Markov Chain: Formal Representation

- State space $\mathrm{S}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$
- Transition probability matrix P

$$
\mathbf{P}=\left[\begin{array}{cccccccccccc}
0 & 1 / 6 & 1 / 6 & 1 / 6 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 6 & 1 / 6 & 0 & 1 / 6 & 1 / 6 & 1 / 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 6 & 0 & 1 / 6 & 1 / 6 & 1 / 3 & 1 / 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 3 & 1 / 6 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 2 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 5 / 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Discounted Rewards

- An assistant professor gets paid, say, 30K per year
- How much, in total, will the assistant professor earn in their lifetime?

$$
30+30+30+30+\ldots=
$$

Discounted Rewards

- A reward in the future is not worth quite as much as a reward now
- Because of chance of inflation
- Because of chance of obliteration
- Example:
- Being promised $\$ 10000$ next year is worth only 90% as much as receiving $\$ 10000$ now
- Assuming payment n years in the future is worth only $(0.9)^{n}$ of payment now, what is the assistant professor's Future Discounted Sum of Rewards?
- Used in economics and probabilistic decision-making all the time
- Discounted sum of future awards using discount factor γ is
- Reward now $+\gamma$ (reward in 1 time step) + Y^{2} (reward in 2 time steps) $+Y^{3}$ (reward in 3 time steps) $+\ldots$

The Academic Life

- $\mathrm{U}_{\mathrm{A}}=$ Expected discounted future rewards starting in state A
- $U_{B}=$ Expected discounted future rewards starting in state B
- $\mathrm{U}_{\mathrm{F}}=$ Expected discounted future rewards starting in state F
- $\mathrm{U}_{\mathrm{S}}=$ Expected discounted future rewards starting in state S
- $U_{D}=$ Expected discounted future rewards starting in state D

Markov System of Rewards

- Set of states $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$
- Each state has a reward $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
- Discount factor $\gamma, 0<\gamma<1$
- Transition probability matrix, P

$$
P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
P_{n 1} & P_{n 2} & \cdots & P_{n n}
\end{array}\right] \quad \mathrm{P}_{\mathrm{ij}}=\operatorname{Prob}\left(\text { Next }=\mathrm{s}_{\mathrm{j}} \quad \mid \quad \text { This }=\mathrm{s}_{\mathrm{i}}\right)
$$

On each step:

-Assume state is s_{i}

- Get reward r_{i}
-Randomly move to state s_{j} with probability P_{ij}
-All future rewards are discounted by Y

Solving a Markov Process

- Write $\mathrm{U}^{*}\left(\mathrm{si}_{\mathrm{i}}\right)=$ expected discounted sum of future rewards starting at state si_{i}

$$
\text { - } \mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}+\mathrm{Y}\left(\mathrm{P}_{\mathrm{i} 1} \mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)+\mathrm{P}_{\mathrm{i} 2} \mathrm{U}^{*}\left(\mathrm{~s}_{2}\right)+\ldots+\mathrm{P}_{\mathrm{in}} \mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{n}}\right)\right)
$$

$$
\overline{\mathrm{U}}=\left(\begin{array}{c}
U^{*}\left(S_{1}\right) \\
U^{*}\left(S_{2}\right) \\
\vdots \\
U^{*}\left(S_{n}\right)
\end{array}\right)
$$

$$
\overline{\mathrm{R}}=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right)
$$

$$
\overline{\mathrm{P}}=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
P_{n 1} & P_{2 n} & \cdots & P_{n n}
\end{array}\right)
$$

Closed form: $U=(I-\gamma P)^{-1} R$

Solving a Markov System using Matrix Inversion

- Upside:
- You get an exact number!
- Downside:
- If you have n states you are solving an n by n system of equations!

Value Iteration

- Define
 time step
- $\mathrm{U}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards over next 2 time steps
- $U^{3}\left(s_{i}\right)=$ Expected discounted sum of rewards over next 3 time steps
- $U^{k}\left(s_{i}\right)=$ Expected discounted sum of rewards over next k time steps

Value Iteration

- Define
- $U^{1}\left(s_{i}\right)=$ Expected discounted sum of rewards over next 1 time step
- $U^{2}\left(s_{\mathrm{i}}\right)=$ Expected discounted sum of rewards over next 2 time steps
- $U^{3}\left(s_{i}\right)=E x p e c t e d ~ d i s c o u n t e d ~ s u m ~ o f ~ r e w a r d s ~ o v e r ~ n e x t ~ 3 ~ t i m e ~ s t e p s ~$
- $U^{k}\left(s_{i}\right)=E x p e c t e d$ discounted sum of rewards over next k time steps

$$
\begin{aligned}
& U^{1}\left(S_{i}\right)=r_{i} \\
& U^{2}\left(S_{i}\right)=r_{i}+\gamma \Sigma_{j=1}^{n} p_{i j} U^{1}\left(s_{j}\right) \\
& U^{k+1}\left(S_{i}\right)=r_{i}+\gamma \Sigma_{j=1}^{n} p_{i j} U^{k}\left(s_{j}\right)
\end{aligned}
$$

Example: Value Iteration

k	U^{k} (sun)	U^{k} (wind)	U^{k} (hail)
1			
2			
3			
4			
5			

Value Iteration

- Compute $\mathrm{U}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for each i
- Compute $\mathrm{U}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for each i
- Compute $\mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)$ for each i
- As $\mathrm{k} \rightarrow \infty, \mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right) \rightarrow \mathrm{U}^{\star}\left(\mathrm{s}_{\mathrm{i}}\right)$
- When to stop?
- $\max \left|U^{k+1}\left(\mathrm{~s}_{\mathrm{i}}\right)-\mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)\right|<\varepsilon$
- This is often faster than matrix inversion

Markov Decision Process

$\gamma=0.9$

You own a
company
In every state you must choose between Saving money or Advertising

Markov Decision Process

- Set of states $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$
- Each state has a reward $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
- Set of actions $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$
- Discount factor $\gamma, 0<\gamma<1$
- Transition probability function, P

$$
P_{\mathrm{ij}}^{\mathrm{k}}=\operatorname{Prob}\left(\text { Next }=\mathrm{s}_{\mathrm{j}} \mid \text { This }=\mathrm{s}_{\mathrm{i}} \text { and you took action } \mathrm{a}_{\mathrm{k}}\right)
$$

On each step:

-Assume state is si_{i}

- Get reward r_{i}
- Choose action a_{k}
-Randomly move to state s_{j} with probability $\mathrm{P}_{\mathrm{ij}}{ }^{\mathrm{k}}$
-All future rewards are discounted by Y

Planning in MDPs

- The goal of an agent in an MDP is to be rational
- Maximize its expected utility
- But maximizing immediate utility is not good enough
- Great action now can lead to certain death tomorrow
- Goal is to maximize its long term reward
- Do this by finding a policy that has high return

Policies

- A policy is a mapping from states to actions
Policy 1

PU	S
PF	A
RU	S
RF	A

Policy 2

$P U$	A
$P F$	A
$R U$	A
$R F$	A

Fact

- For every MDP there exists an optimal policy
- It is the policy such that for every possible start state, there is no better option that to follow the policy

Our goal: To find this policy!

Finding the Optimal Policy

- Naive approach:
- Run through all possible policies and select the best

Optimal Value Function

- Define $\mathrm{V}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)$ to be the expected discounted future rewards
- Starting from state si , assuming we use the optimal policy
- Define $\mathrm{V}^{t}\left(\mathrm{~s}_{\mathrm{i}}\right)$ to be the possible sum of discounted rewards I can get if I start at state s_{i} and live for t time steps
- Note: $\mathrm{V}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}$

Example

$$
\gamma=0.9
$$

t	$\mathrm{V}^{\mathrm{t}}(\mathrm{PU})$	$\mathrm{V}^{\mathrm{t}}(\mathrm{PF})$	$\mathrm{V}^{\mathrm{t}}(\mathrm{RU})$	$\mathrm{V}^{\mathrm{t}}(\mathrm{RF})$
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	8.55	16.53	25.08
4	4.76	12.20	18.35	28.72
5	7.63	15.07	20.40	31.18
6	10.22	17.46	22.61	33.21

Bellman's Equation

$$
V^{t+1}\left(s_{i}\right)=\max _{k}\left[r_{i}+\gamma \Sigma_{j=1}{ }^{n} P_{i j}{ }^{k} V^{\dagger}\left(s_{j}\right)\right]
$$

- Now we can do Value Iteration!
- Compute $\mathrm{V}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for all i
- Compute $\mathrm{V}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for all i
- ...
- Compute $\mathrm{V}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)$ for all i
- Until convergence max $\mathrm{i}_{\mathrm{i}} \mathrm{V}^{\mathrm{t}+1}\left(\mathrm{~s}_{\mathrm{i}}\right)-\mathrm{V}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right) \mid<\varepsilon$

aka Dynamic Programming

Finding the Optimal Policy

- Compute $\mathrm{V}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for all i using value iteration
- Define the best action in state s_{i} as
$\operatorname{argmax}{ }_{k}\left[\mathrm{r}_{i}+\gamma \sum_{\mathrm{j}} \mathrm{Pi}_{\mathrm{i}}{ }^{\mathrm{k}} \mathrm{V}^{*}\left(\mathrm{~s}_{\mathrm{j}}\right)\right]$

Policy Iteration

There are other ways of finding the optimal policy

- Policy Iteration
- Alternates between two steps
- Policy evaluation: Given π, compute $\mathrm{V}_{\mathrm{i}}=\mathrm{V} \pi$
- Policy improvement: Calculate a new π_{i+1} using 1-step lookahead

Policy Iteration Algorithm

- Start with random policy π
- Repeat until you stop changing the policy
- Compute long term reward for each s , using π
- For each state s_{i}

If

$$
\max _{k}\left[r_{i}+\gamma \sum_{j} P_{i, j}^{k} V^{*}\left(s_{j}\right)\right]>r_{i}+\gamma \sum_{j} P_{i, j}^{\pi\left(s_{i}\right)} V^{*}\left(s_{j}\right)
$$

Then

$$
\pi\left(s_{i}\right) \leftarrow \arg \max _{k}\left[r_{i}+\gamma \sum_{j} P_{i, j}^{k} V^{*}\left(s_{j}\right)\right]
$$

Summary

- MDPs describe planning tasks in stochastic worlds
- Goal of the agent is to maximize its expected return
- Value functions estimate the expected return
- In finite MDPs there is a unique optimal policy
- Dynamic programing can be used to find it

Summary

- Good news
- finding optimal policy is polynomial in number of states
- Bad news
- finding optimal policy is polynomial in number of states
- Number of states tends to be very very large
- exponential in number of state variables
- In practice, can handle problems with up to 10 million states

Extensions

- In "real life" agents may not know what state they are in
- Partial observability
- Partially Observable MDPs (POMDPs)
- Set of states
- Set of actions
- Each state has a reward
- Transition probability function $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mathrm{a}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-1}\right)$
- Set of observations $O=\left\{0_{1}, \ldots, \mathrm{o}_{\mathrm{k}}\right\}$
- Observation model $\mathrm{P}\left(\mathrm{o}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}}\right)$

POMDPs

- Agent maintains a belief state, b
- Probability distribution over all possible states
- $b(s)$ is the probability assigned to state s
- Insight: optimal action depends only on agent's current belief state
- Policy is a mapping from belief states to actions

POMDPs

- Decision cycle of an agent
- Given current b, execute action $a=\pi^{\star}(b)$
- Receive observation o
- Update current belief state
- $\quad b^{\prime}\left(s^{\prime}\right)=a O\left(o l s^{\prime}\right) \Sigma s P\left(s^{\prime} l a, s\right) b(s)$
- Possible to write a POMDP as an MDP by summing over all actual states s' that an agent might reach
- $P\left(b^{\prime} l a, b\right)=\Sigma_{0} P\left(b{ }^{\prime} l o, a, b\right) \Sigma_{s^{\prime}} O\left(o l s^{\prime}\right) \Sigma_{s} P\left(s^{\prime} \mid a, s\right) b(s)$

POMDPs

- Complications

- Our (new) MDP has a continuous state space
- In general, finding (approximately) optimal policies is difficult (PSPACE-hard)
- Problems with even a few dozen states are often infeasible
- New techniques, take advantage of structure,....

