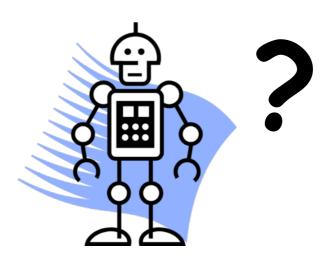
Introduction to Decision Making

CS 486/686: Introduction to Artificial Intelligence

Outline

- Utility Theory
- Decision Trees

- I give a robot a planning problem: "I want coffee"
 - But the coffee maker is broken: Robot reports "No plan!"



- I want more robust behaviour
- I want my robot to know what to do when my primary goal is not satisfied
 - Provide it with some indication of my preferences over alternatives
 - e.g. coffee better than tea, tea better than water, water better than nothing,...

- But it is more complicated than that
 - It could wait 45 minutes for the coffee maker to be fixed
- What is better?
 - Tea now?
 - Coffee in 45 minutes?

Preferences

- A preference ordering ≥ is a ranking over all possible states of the world s
- These could be outcomes of actions, truth assignments, states in a search problem, etc
 - s ≥ t: state s is at least as good as state t
 - s > t: state s is strictly preferred to state t
 - s ~ t: agent is ambivalent between states s and

Preferences

- If an agent's actions are deterministic, then we know what states will occur
- If an agent's actions are not deterministic, then we represent this by lotteries
 - Probability distribution over outcomes
 - Lottery L= $[p_1,s_1;p_2,s_2;...;p_n,s_n]$
 - s_1 occurs with probability p_1 , s_2 occurs with probability p_2 , ...

Axioms

- Orderability: Given 2 states A and B
 - **-** (A≳B)∨(B≳A)∨(A~B)
- Transitivity: Given 3 states A, B, C
 - $(A \ge B) \land (B \ge C) \rightarrow (A \ge C)$
- Continuity:
 - A \gtrsim B \gtrsim C→Exists p, [p,A;(1-p),C] \sim B
- Substitutability
 - A~B→[p,A;1-p,C]~[p,B,1-p,C]
- Monotonicity:
 - $(A \ge B)$ → $(p \ge q \leftrightarrow [p,A;1-p,B] \ge [q,A;1-q,B]$
- Decomposability
 - [p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements"
 - It is a weak ordering
- Example: Why transitivity?
 - Without transitivity, I can construct a "Money pump"

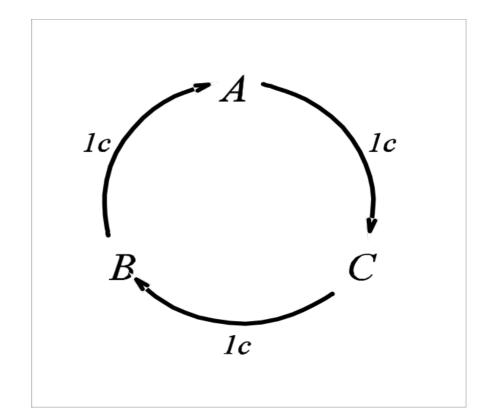
Money Pump

A>B>C>A

Assume that agent currently has item A. We offer to sell it item C for some small amount.

Since C>A it accepts. Then sell it B. Since B>A it accepts.

Sell it A. Since A>B it accepts...

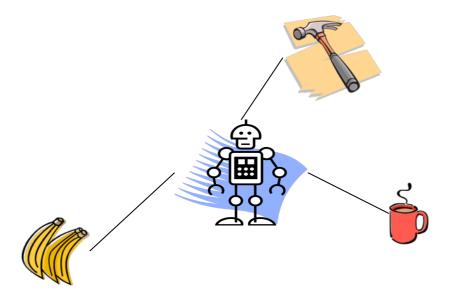


Decision Problem: Certainty

- A decision problem under certainty is <D,
 S, f, ≥> where
 - D is a set of decisions
 - S is a set of outcomes or states
 - f is an outcome function f:D→S
 - ⇒ is a preference ordering over S
- A solution to a decision problem is any d* in D such that f(d*)≥f(d) for all d in D

Computational Issues

- At some level, a solution to a decision problem is trivial
 - But decisions and outcome functions are rarely specified explicitly
 - For example: In search you construct the set of decisions by exploring search paths
 - Do not know the outcomes in advance



Preferences

- Suppose actions do not have deterministic outcomes
 - Example: When the robot pours coffee, 20% of the time it spills it, making a mess
 - Preferences: c,~mess>~c,~mess>~c, mess
- What should your robot do?
 - Decision getcoffee leads to a good outcome and a bad outcome with some probability
 - Decision donothing leads to a medium outcome

Utilities

- Rather than just ranking outcomes, we need to quantify our degree of preference
 - How much more we prefer one outcome to another (e.g c to ~mess)
- A utility function U:S→R associates a real-valued utility to each outcome
 - Utility measures your degree of preference for s
- U induces a preference ordering ≥_U over S where
 s≥_Ut if and only if U(s)≥U(t)

Expected Utility

- Under conditions of uncertainty, decision d induces a distribution over possible outcomes
 - Pd(s) is the probability of outcome s under decision d
- The **expected utility** of decision d is $EU(d)=\sum_{s \text{ in } S} P_d(s)U(s)$

Example

- When my robot pours coffee, it makes a mess 20% of the time
- If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then
 - EU(getcoffee)=(0.8)10+(0.2)0=8
 - **-** EU(donothing)=5
- If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then
 - **-** EU(*getcoffee*)=8
 - **-** EU(*donothing*)=9

Maximum Expected Utility Principle

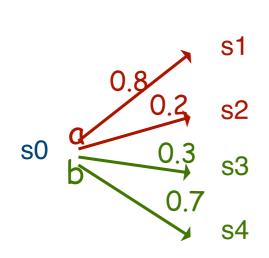
- Principle of Maximum Expected Utility
 - The optimal decision under conditions of uncertainty is that with the greatest expected utility
- Robot example:
 - First case: optimal decision is getcoffee
 - Second case: optimal decision is donothing

Decision Problem: Uncertainty

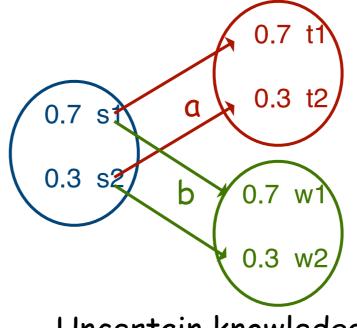
- A decision problem under uncertainty is
 - Set of decisions D
 - Set of outcomes S
 - Outcome function P:D \rightarrow ∆(S)
 - $\Delta(S)$ is the set of distributions over S
 - Utility function U over S
- A solution is any d* in D such that EU(d*)≥EU(d) for all d in D

Notes: Expected Utility

- This viewpoint accounts for
 - Uncertainty in action outcomes
 - Uncertainty in state of knowledge
 - Any combination of the two



Stochastic actions



Uncertain knowledge

Notes: Expected Utility

Why Maximum Expected Utility?

- Where do these utilities come from?
 - Preference elicitation

Notes: Expected Utility

- Utility functions need not be unique
 - If you multiply U by a positive constant, all decisions have the same relative utility
 - If you add a constant to U, then the same thing is true
- U is unique up to a positive affine transformation

```
If d^*=argmax \sum_d Pr(d)U(d)
then d^*=argmax \sum_d Pr(d)[aU(d)+b]
a>0
```

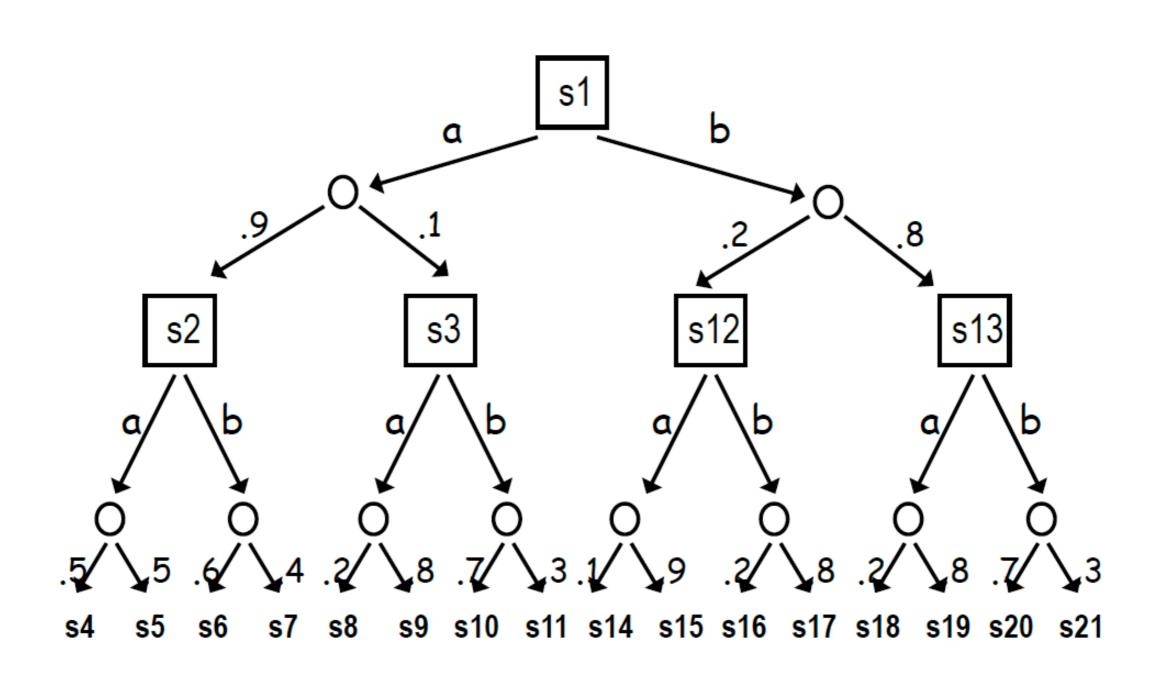
What are the Complications?

- Outcome space can be large
 - State space can be huge
 - Do not want to spell out distributions explicitly
 - Solution: Use Bayes Nets (or related Influence diagrams)
- Decision space is large
 - Usually decisions are not one-shot
 - Sequential choice
 - If we treat each plan as a distinct decision, then the space is too large to handle directly
 - Solution: Use dynamic programming to construct optimal plans

Simple Example

- Two actions: a,b
 - That is, either [a,a], [a,b], [b,a], [b,b]
- We can execute two actions in sequence
- Actions are stochastic: action a induces distribution P_a(s_i|s_i) over states
 - P_a(s₂ls₁)=0.9 means that the prob. of moving to state s2 when taking action a in state s1 is 0.9
 - Similar distribution for action b
- How good is a particular plan?

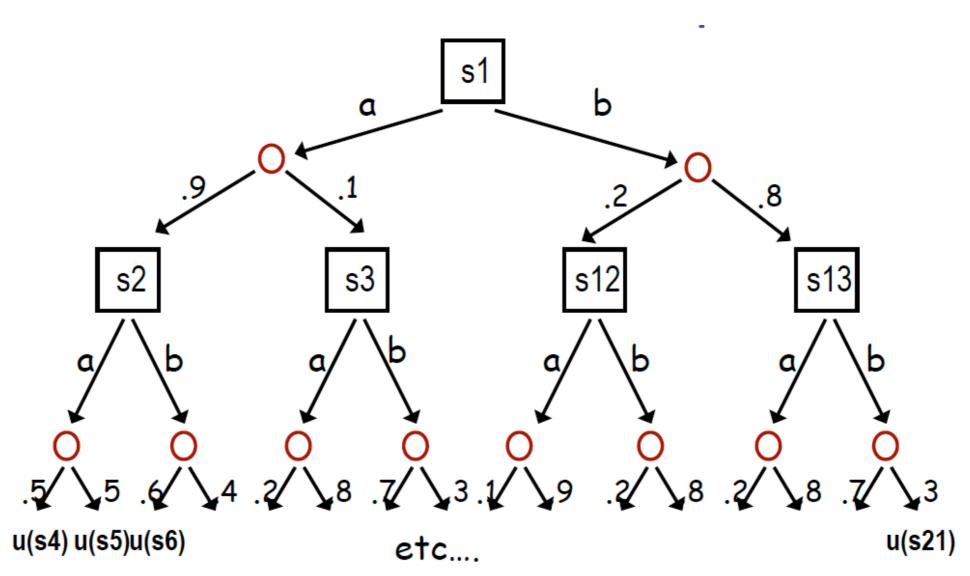
Distributions for Action Sequences



How Good is a Sequence?

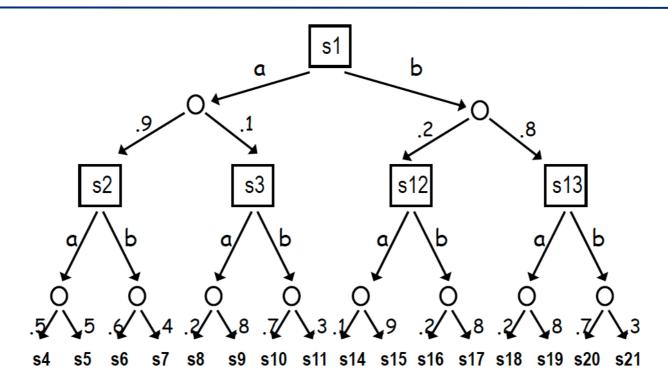
- We associate utilities with the final outcome
 - How good is it to end up at s₄, s₅, s₆, ...
- Now we have:
 - EU(aa)=.45U(s₄)+.45U(s₅)+.02U(s₈)+.08(s₉)
 - $EU(ab)=.54U(s_6)+.36U(s_7)+.07U(s_{10})+.03U(s_{11})$
 - etc

Utilities for Action Sequences



Looks a lot like a game tree, but with chance nodes instead of min nodes. (We average instead of minimizing)

Why Sequences Might Be Bad



- Suppose we do a first; we could reach s₂ or s₃
 - At s2, assume: EU(a)=.5U(s4)+.5U(s5)>EU(b)=.6U(s6)+.4U(s7)
 - At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)
- After doing a first, we want to do a next if we reach s₂, but we want to be b second if we reach s₃

Policies

- We want to consider policies, not sequences of actions (plans)
- We have 8 policies for the decision tree:

```
[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]

[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]

[a; if s2 b, is s3 a] [b; if s12 b, if s13 a]

[a; if s2 b, if s3 b] [b; if s12 b. if s13 b]
```

- We have 4 plans
 - [a;a], [a;b], [b;a], [b;b]
 - Note: each plans corresponds to a policy so we can only gain by allowing the decision maker to use policies

Evaluating Policies

- Number of plans (sequences) of length k
 - Exponential in k: IAI^k if A is the action set
- Number of policies is much larger
 - If A is the action set and O is the outcome set, then we have
 AllOl)^k policies
- Fortunately, dynamic programming can be used
 - Suppose EU(a)>EU(b) at s2
 - Never consider a policy that does anything else at s2
- How to do this?
 - Back values up the tree much like minimax search

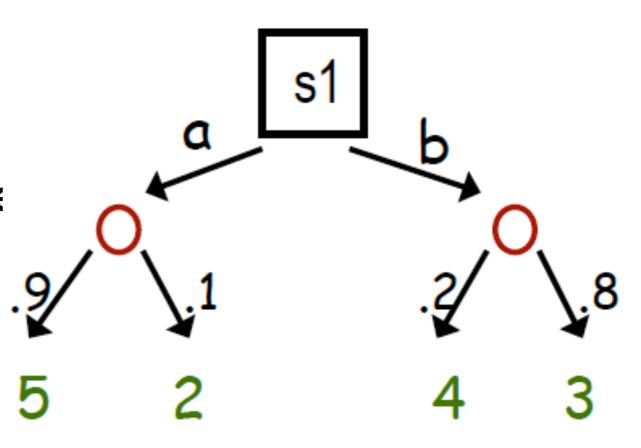
Decision Trees

 Squares denote choice nodes (decision nodes)

Circles denote chance nodes

Uncertainty regarding action effects

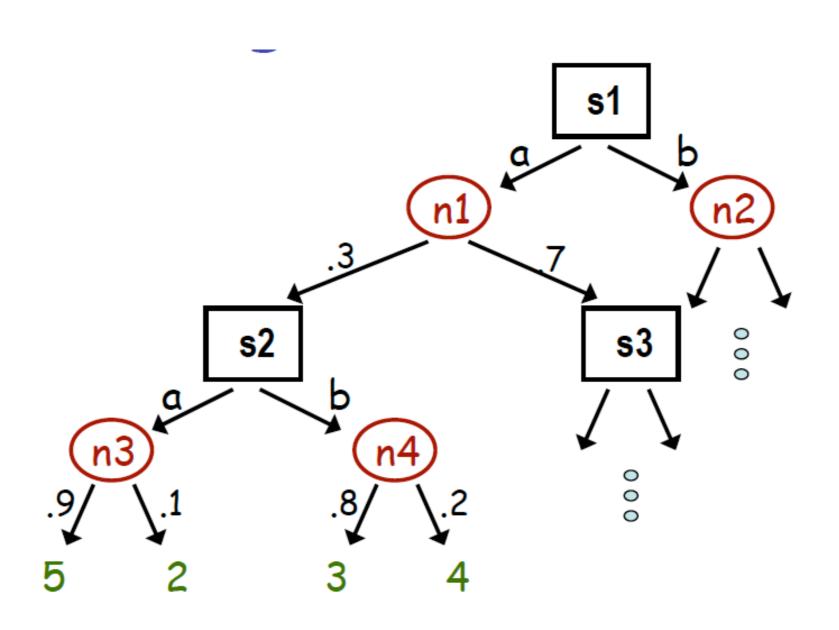
 Terminal nodes labelled with utilities



Evaluating Decision Trees

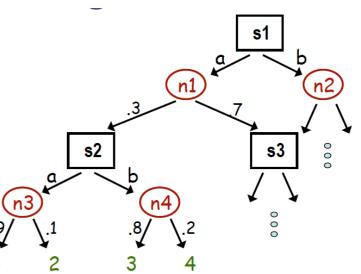
- Procedure is exactly like game trees except
 - "MIN" is "nature" who chooses outcomes at chance nodes with specified probability
 - Average instead of minimize
- Back values up the tree
 - U(t) defined for terminal nodes
 - U(n)=avg {U(c):c a child of n} if n is chance node
 - U(n)=max{U(c:c is child of n} if n is a choice node

Evaluating a Decision Tree



Decision Tree Policies

- Note that we don't just compute values, but policies for the tree
- A policy assigns a decision to each choice node in the tree
- Some policies can't be distinguished in terms of their expected values
 - Example: If a policy chooses a at s1, the choice at s4 does not matter because it won't be reached
 - Two policies are implementationally indistinguishable if they disagree only on unreachable nodes



Computational Issues

- Savings compared to explicit policy evaluation is substantial
- Let n=IAI and m=IOI
 - Evaluate only O((nm)^d) nodes in tree of depth d
 - Total computational cost is thus O((nm)^d)
 - Note that there are also (nm)^d policies
 - Evaluating a single policy requires O(m^d)
 - Total computation for explicitly evaluating each policy would be O(ndm2d)

Computational Issues

- Tree size: Grows exponentially with depth
 - Possible solutions: Bounded lookahead, heuristic search procedures
- Full Observability: We must know the initial state and outcome of each action
 - Possible solutions: Handcrafted decision trees, more general policies based on observations

Other Issues

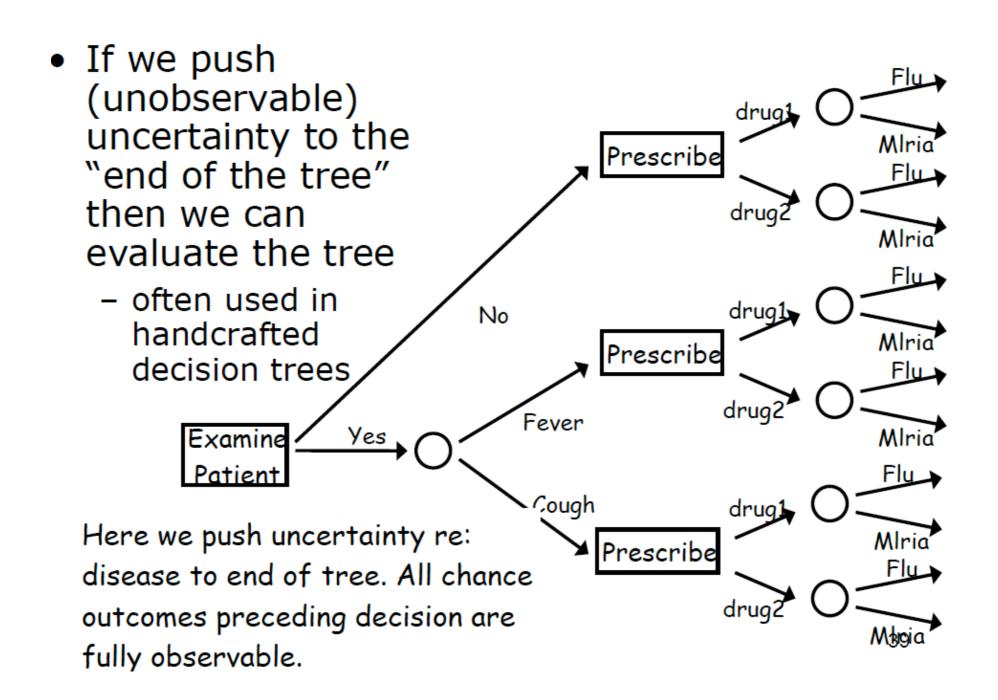
- Specification: Suppose each state is an assignment of values to variables
 - Representing action probability distributions is complex
 - Large branching factor
- Possible solutions:
 - Bayes Net representations
 - Solve problems using decision networks

We will discuss these later in the semester

Key Assumption: Observability

- Full observability: We must know the initial state and outcome of each action
 - To implement a policy we must be able to resolve the uncertainty of any chance node that is followed by a decision node
 - e.g. After doing a at s1, we must know which of the outcomes (s2 or s3) was realized so that we know what action to take next
 - Note: We don't need to resolve the uncertainty at a chance node if no decision follows it

Partial Observability



Large State Spaces (Variables)

- To represent outcomes of actions or decisions, we need to specify distributions
 - P(sld): probability of outcome s given decision d
 - P(sla,s'): probability of state s given action a was taken in state s'
- Note that the state space is exponential in the number of variables
 - Spelling out distributions explicitly is intractable

In a couple of weeks

- Bayes Nets can be used to represent actions
 - Joint distribution over variables, conditioned on action/decision and previous state

Summary

- Basic properties of preferences
- Relationship between preferences and utilities
- Principle of Maximum Expected Utility
- Decision Trees

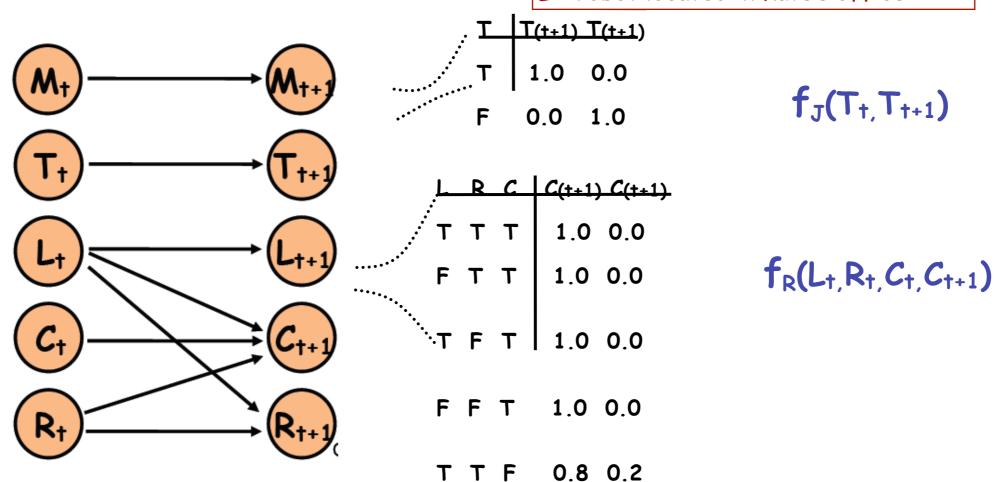
Extra Material

- The next few slides are bonus material for now
- We will visit these ideas in a few weeks

Example Action Using a Dynamic Bayes Net

Deliver Coffee action

M - mail waiting C - Kate has coffee T - lab tidy R - robot has coffee L - robot located in Kate's office

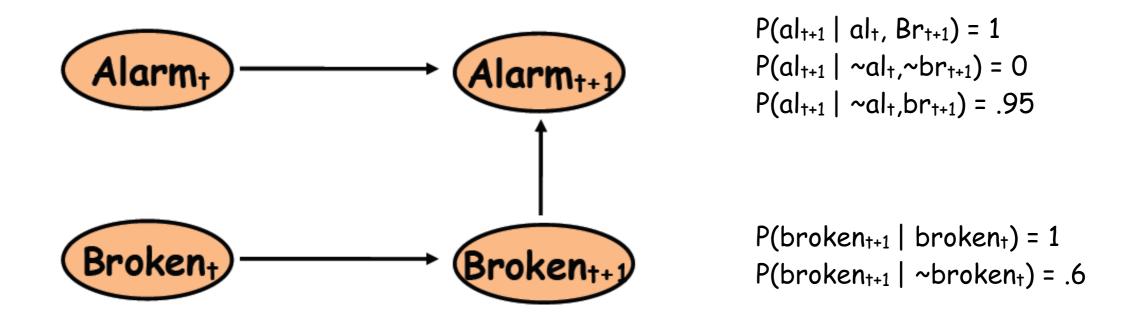


Dynamic BN Action Representation

- Dynamic Bayes Nets (DBN)
 - List all state variables for time t (pre-action)
 - List all state variables for time t+1 (post-action)
 - Indicate parents of all t+1 variables
 - Can include time t and t+1 variables, but network must be acyclic
 - Specify CPT for each time t+1 variable
- Note: Generally no prior given for time t variables
 - We are generally interested in conditional distributions over postaction states given pre-action states
 - Time t variables are instantiated as "evidence" when using a DBN (generally)

Example

Throw rock at window action



Throwing rock has certain probability of breaking window and setting off alarm; but whether alarm is triggered depends on whether rock actually broke the window.

Use of BN Action Representation

- DBNs: Actions concisely, naturally specified
- Can be used in two ways
 - To generate "expectimax" search tree to solve decision problems
 - Used directly in stochastic decision making algorithms
- First use does not buy us that much computationally when solving decision problems
- Second use allows us to compute expected utilities without enumerating the outcome space (tree)
 - Decision networks (next week)