Adversarial Search

CS 486/686: Introduction to Artificial Intelligence
Winter 2016
Introduction

• So far have only been concerned with single agents

• Today
 - Multiple agents planning against each other
 - Adversarial settings
Outline

• Games
• Minimax search
• Alpha-beta pruning
• Evaluation functions
• Coping with chance
• Game programs
Games

- Games are the oldest, most well-studied domain in AI
- Why?
 - They are fun
 - Easy to represent, rules are clear
 - State spaces can be very large
 - In chess, the search tree has $\sim 10^{154}$ nodes
 - Like the “real world” in that decisions have to be made and time is important
 - Easy to determine when a program is doing well
Types of Games

• Perfect vs Imperfect Information
 – Perfect information: You can see the entire state of the game
 – Imperfect information:

• Deterministic vs Stochastic
 – Deterministic: change in state is fully controlled by the players
 – Stochastic: change in state is partially determined by chance
Games as Search Problems

- **2-player perfect information game**
- **State**: board configuration plus the player who’s turn it is to move
- **Successor function**: given a state, returns a list of (move,state) pairs indicating legal move and resulting state
- **Terminal state**: states where there is a win/loss/draw
- **Utility function**: assigns a numerical value to terminal states
- **Solution**: a strategy (way of picking moves) that wins the game
Game Search Challenge

• What makes game search challenging?
 - There is an opponent
 - The opponent is malicious
 - it wants to win (by making you lose)
 - We need to take this into account when choosing moves

• Notation:
 - **MAX** player wants to maximize its utility
 - **MIN** player wants to minimize its utility
Example

MAX's job is to use the search tree to determine the best move.
Optimal Strategies

• In standard search
 - Optimal solution is sequence of moves leading to winning terminal state

• **Strategy** (from MAX’s perspective)
 - Specify a move for the initial state
 - Specify a move for all possible states arising from MIN’s response
 - Then all possible responses to all of MIN’s responses to MAX’s previous moves
 - ...

Optimal Strategies

• **Goal**: Find optimal strategy

• What do we mean by optimal?

 - Strategy that leads to outcomes at least as good as any other strategy, *given that MIN is playing optimally*

 - Equilibrium (game theory)

• Today we focus mainly on **zero-sum games of perfect information**

 - Easy games according to game theory
MINIMAX-VALUE(n) =

\[\begin{cases}
\text{Utility(n)} & \text{if n is a terminal state} \\
\max_s \in \text{Succ}(n) \ Minimax-VALUE(s) & \text{if n is a MAX node} \\
\min_s \in \text{Succ}(n) \ Minimax-VALUE(s) & \text{if n is a MIN node}
\end{cases}\]
Properties of Minimax

- Complete if tree is finite
- Time complexity: $O(b^m)$
 - m is depth of tree
- Space complexity: $O(bm)$
 - It is DFS
- Optimal against an *optimal opponent*
 - If opponent is not playing optimally, then may be better off doing something else
Minimax and Multi-Player Games

![Game Tree Diagram]

- Node labels indicate moves and associated values.
- Moves are taken in the order of players: A, B, C, A.
- Terminal nodes represent the end of the game and are marked with final values.
- Non-terminal nodes represent player choices, with move indicators (X for A).
- Values in parentheses indicate outcome after a move.
Can we now write a program that will play chess reasonably well?
Question

- Can we now write a program that will play chess reasonably well
 - For chess $b \sim 35$ and $m \sim 100$
Alpha-Beta Pruning

• If we are smart (and lucky) we can do pruning
 – Eliminate large parts of the tree from consideration

• Alpha-beta pruning applied to a minimax tree
 – Returns the same decision as minimax
 – Prunes branches that cannot influence final decision
Alpha-Beta Pruning

- Alpha:
 - Value of best (highest value) choice we have found so far on path for MAX

- Beta:
 - Value of best (lowest value) choice we have found so far on path for MIN

- Update alpha and beta as search continues

- Prune as soon as value of current node is known to be worse than current alpha or beta values for MAX or MIN
Example

\[\text{MAX} \]

\[\text{MIN} \]

\[3 \rightarrow 12 \rightarrow 8 \]

\[\geq 3 \]
Example

\[
\begin{align*}
\text{MAX} & : [3, \infty] \\
\text{MIN} & : \geq 2
\end{align*}
\]

Prune remaining children
Example

MAX

MIN

\[[3, \infty] \]

3 ≤ 2 ≤ 14

3 12 8 2 14
Example

\[\text{MAX} \]

\[\text{MIN} \]

\[[3, \infty] \]

3
12
8
2
14
5
Example

MAX

MIN

[3, ∞]

[12, 8, 3, 2, 14, 2, 5, 2]
Properties of Alpha-Beta

- Pruning does not affect the final result
 - Why?
- Move ordering is important
- Alpha-beta demonstrates the value of reasoning about which computations are important
Real-Time Decisions

- Alpha-Beta can be a huge improvement over minimax
 - Still not good enough
 - Need to search to terminal states for at least part of search space
 - Need to make decisions quickly

- Solution
 - Heuristic evaluation function + cutoff tests
Evaluation Functions

• Apply an evaluation function to a state
 - If terminal state, function returns actual utility
 - If non-terminal, function returns estimate of the expected utility

• Function must be fast to compute
Evaluation Functions

• How do we get evaluation functions?
 - Expert knowledge
 - Learned from experience

• Look for features of states
 - Weighted linear function $\text{Eval}(s) = \sum_i w_i f_i(s)$
Cutting Off Search

- Do we have to search to terminal states?
 - No! Cut search early and apply evaluation function

- When?
 - Arbitrarily (but deeper is better)
 - Quiescent states
 - States that are “stable”
 - Singular extensions
 - Searching deeper when you have a move that is “clearly better”
 - Can be used to avoid the horizon effect
Cutting Off Search

• How deep?
 - Novice player
 - 5-ply (minimax)
 - Master player
 - 10-ply (alpha-beta)
 - Grandmaster
 - 14-ply + fantastic evaluation function, opening and endgame databases,...
Stochastic Games

\[
\begin{array}{c}
\text{MAX} \\
\text{CHANCE} \\
\text{MIN} \\
\text{CHANCE} \\
\text{MAX} \\
\text{TERMINAL}
\end{array}
\]

\[
\begin{array}{c}
1/36 \\
1/18 \\
1/18 \\
1/36 \\
1 \\
-1
\end{array}
\]

\[
\begin{array}{c}
6/6 \\
1,2 \\
6,5 \\
6/6 \\
1 \\
1
\end{array}
\]

\[
\begin{array}{c}
\ldots \\
\ldots \\
\ldots \\
\ldots \\
\ldots \\
\ldots
\end{array}
\]
Stochastic Games

• Need to consider **best/worst cases + probability** they will occur

• Recall: Expected value of a random variable \(x \) \(E[x] = \sum_{x \in X} P(x)x \)

• **Expectiminimax**: minimax but at chance nodes compute the expected value
Expectiminimax
Expectiminimax

WARNING: exact values do matter! Order-preserving transformations of the evaluation function can change the choice of moves. Must have **positive linear transformations** only.
Games pose lots of fascinating challenges for AI researchers

Minimax search allows us to play optimally against an optimal opponent

Alpha-beta pruning allows us to reduce the search space

A good evaluation function is key to doing well

Games are fun!
Some Game Programs
Checkers

Mr. Tinsley suffered his 4th and 5th losses ever against Chinook
Checkers

• Chinook (University of Alberta)
 - World Man-Machine Checkers Champion
 - Alpha-beta search
 - Opening database

• Secret weapon: Endgame database
 - Perfect knowledge into the search

• Checkers is now dominated by computers
 - Checkers is (weakly) solved
Chess: Kasparov vs. Deep Blue

1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws

<table>
<thead>
<tr>
<th>Kasparov</th>
<th>Deep Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height: 5'10”</td>
<td>Height: 6' 5”</td>
</tr>
<tr>
<td>Weight: 176 lbs</td>
<td>Weight: 2,400 lbs</td>
</tr>
<tr>
<td>Age: 34 years</td>
<td>Age: 4 years</td>
</tr>
<tr>
<td>Computers: 50 billion neurons</td>
<td>Computers: 32 RISC processors + 256 VLSI chess engines</td>
</tr>
<tr>
<td>Speed: 2 pos/sec</td>
<td>Speed: 200,000,000 pos/sec</td>
</tr>
<tr>
<td>Knowledge: Extensive</td>
<td>Knowledge: Primitive</td>
</tr>
<tr>
<td>Power Source: Electrical/chemical</td>
<td>Power Source: Electrical</td>
</tr>
<tr>
<td>Ego: Enormous</td>
<td>Ego: None</td>
</tr>
</tbody>
</table>

Jonathan Schaeffer
Chess

- Its secret:
 - Specialized chess processor + special-purpose memory optimization
 - Very sophisticated evaluation function
 - Expert features and hand-tuned weights
 - Opening and closing books
 - Alpha-beta + improvements (searching up to 40 ply deep)
 - Searched over 200 million positions per second
Chess

- There are now apps that are on par with human champions
- Is Chess still a human game or have computers conquered it?
Backgammon

• TD-Gammon (Gerry Tesauro at IBM)
• One of the top players in the world
• Searches only two moves ahead!
• Its secret: One amazing evaluation function
 - Neural network trained with reinforcement learning during ~1 million games played against itself
 - Humans play backgammon differently now, based on what TD-Gammon learned about the game
 - Very cool AI 😊
Go

- Large branching factor makes Go too large to solve by classic search methods
 - pieces added to the board
 - evaluation function
 - ...
- Limited progress for decades
• BUT computer Go has undergone a revolution in the past ~5 years
 - Close to perfection on 7x7 games
 - Reached top human level on 9x9 games
 - Still weaker than top humans on 19x9 boards
Go

- Monte-Carlo Tree Search (MCTS)
 - Build search tree according to outcomes of simulated plays

Upper Confidence Bounds for Trees (UCT): “Minimax search” using UCB

\[v_i + C \sqrt{\frac{\ln N}{n_i}} \]
Card Games

• Focus has been on Bridge and Poker
 - Humans are still winning...
 - But machines are catching up!

• Issues
 - Stochastic and partially observable
 - Ideas discussed today don’t work well
 - New approaches are being developed