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Introduction

• So far have only been concerned with 
single agents

• Today

- Multiple agents planning against each other
- Adversarial settings
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Outline

• Games

• Minimax search

• Alpha-beta pruning

• Evaluation functions

• Coping with chance

• Game programs
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Games
• Games are the oldest, most well-studied domain in AI

• Why?

- They are fun

- Easy to represent, rules are clear

- State spaces can be very large
- In chess, the search tree has ~10154 nodes

- Like the “real world” in that decisions have to be made and 
time is important

- Easy to determine when a program is doing well
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Types of Games
• Perfect vs Imperfect Information

- Perfect information: You can see the entire state of the 
game

- Imperfect information:

• Deterministic vs Stochastic

- Deterministic: change in state is fully controlled by the 
players

- Stochastic: change in state is partially determined by 
chance
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Games as Search Problems

• 2-player perfect information game

• State: board configuration plus the player who’s turn it is to 
move

• Successor function: given a state, returns a list of 
(move,state) pairs indicating legal move and resulting state

• Terminal state: states where there is a win/loss/draw

• Utility function: assigns a numerical value to terminal states

• Solution: a strategy (way of picking moves) that wins the 
game

6



Game Search Challenge

• What makes game search challenging?

- There is an opponent

- The opponent is malicious
- it wants to win (by making you lose)

- We need to take this into account when choosing moves

• Notation:

- MAX player wants to maximize its utility

- MIN player wants to minimize its utility
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Example

MAX’s job is to use the 
search tree to 
determine the best 
move
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Optimal Strategies
• In standard search

- Optimal solution is sequence of moves leading to winning 
terminal state

• Strategy (from MAX’s perspective)

- Specify a move for the initial state

- Specify a move for all possible states arising from MIN’s 
response

- Then all possible responses to all of MIN’s responses to 
MAX’s previous moves

- ...
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Optimal Strategies

• Goal: Find optimal strategy

• What do we mean by optimal?

- Strategy that leads to outcomes at least as good as 
any other strategy, given that MIN is playing optimally
- Equilibrium (game theory)

• Today we focus mainly on zero-sum games of 
perfect information

- Easy games according to game theory
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Minimax Value

Utility(n)  if n is a terminal state

Maxs in Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins in Succ(n) MINIMAX-VALUE(s) is n is a MIN node

MINIMAX-VALUE(n) =

ply
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Properties of Minimax
• Complete if tree is finite

• Time complexity: O(bm) 

- m is depth of tree

• Space complexity: O(bm) 

- It is DFS

• Optimal against an optimal opponent

- If opponent is not playing optimally, then may be better 
off doing something else
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Minimax and Multi-Player 
Games
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Question

• Can we now write a program that will 
play chess reasonably well?
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Question

• Can we now write a program that will 
play chess reasonably well

- For chess b~35 and m~100
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Alpha-Beta Pruning

• If we are smart (and lucky) we can do 
pruning

- Eliminate large parts of the tree from consideration

• Alpha-beta pruning applied to a minimax tree

- Returns the same decision as minimax

- Prunes branches that cannot influence final 
decision
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Alpha-Beta Pruding

• Alpha:

- Value of best (highest value) choice we have found so far on 
path for MAX

• Beta:

- Value of best (lowest value) choice we have found so far on 
path for MIN

• Update alpha and beta as search continues

• Prune as soon as value of current node is known to be 
worse than current alpha or beta values for MAX or MIN
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Example
MAX

MIN

≥ 3

12 8

3

3
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Example
MAX

MIN

[3,∞]

12 8

3

3 2

≥2

Prune 
remaining 
children
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Example
MAX

MIN

[3,∞]

12 8

3

3 2

≤2

14

≤14
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Example
MAX

MIN

[3,∞]

12 8

3

3 2

≤2

14

≤5

5
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Example
MAX

MIN

[3,∞]

12 8

3

3 2

≤2

14

2

5 2
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Properties of Alpha-Beta

• Pruning does not affect the final result

- Why?

• Move ordering is important

• Alpha-beta demonstrates the value of 
reasoning about which computations 
are important
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Real-Time Decisions

• Alpha-Beta can be a huge improvement 
over minimax

- Still not good enough
- Need to search to terminal states for at least part of search 

space

- Need to make decisions quickly

• Solution

- Heuristic evaluation function + cutoff tests
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Evaluation Functions

• Apply an evaluation function to a state

- If terminal state, function returns actual 
utility

- If non-terminal, function returns estimate of 
the expected utility

• Function must be fast to compute
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Evaluation Functions

• How do we get evaluation functions?

- Expert knowledge

- Learned from experience

• Look for features of states

- Weighted linear function Eval(s)=∑i wifi(s)
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Cutting Off Search
• Do we have to search to terminal states?

- No! Cut search early and apply evaluation function

• When?

- Arbitrarily (but deeper is better)

- Quiescent states
- States that are “stable”

- Singular extensions
- Searching deeper when you have a move that is “clearly better”

- Can be used to avoid the horizon effect
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Cutting Off Search

• How deep?

- Novice player
- 5-ply (minimax)

- Master player
- 10-ply (alpha-beta)

- Grandmaster
- 14-ply + fantastic evaluation function, opening and endgame 

databases,...
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Stochastic Games
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Stochastic Games

• Need to consider best/worst cases + 
probability they will occur

• Recall: Expected value of a random 
variable x E[x]=∑x in X P(x)x

• Expectiminimax: minimax but at 
chance nodes compute the expected 
value
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Expectiminimax
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Expectiminimax

WARNING: exact values do matter!  Order-preserving 
transformations of the evaluation function can change the choice 
of moves.  Must have positive linear transformations only
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Summary

• Games pose lots of fascinating challenges for 
AI researchers

• Minimax search allows us to play optimally 
against an optimal opponent

• Alpha-beta pruning allows us to reduce the 
search space

• A good evaluation function is key to doing well

• Games are fun!
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Some Game Programs
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Checkers

Mr. Tinsley suffered his 4th and 5th losses ever 
against Chinook
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Checkers
• Chinook (University of Alberta)

- World Man-Machine Checkers Champion

- Alpha-beta search

- Opening database

• Secret weapon: Endgame database

- Perfect knowledge into the search

• Checkers is now dominated by computers

- Checkers is (weakly) solved
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Chess: Kasparov vs. Deep Blue
1997: Deep Blue wins 
by 3 wins, 1 loss, and 
2 draws

Kasparov

5’10” 
176 lbs 
34 years
50 billion neurons

2 pos/sec
Extensive
Electrical/chemical
Enormous

Deep Blue

6’ 5”
2,400 lbs

4 years
32 RISC processors  

+ 256 VLSI chess engines
200,000,000 pos/sec

Primitive
Electrical

None

Height
Weight
Age

Computers

Speed
Knowledge

Power Source
Ego

Jonathan Schaeffer
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Chess
• Its secret:

- Specialized chess processor + special-purpose 
memory optimization

- Very sophisticated evaluation function
- Expert features and hand-tuned weights

- Opening and closing books

- Alpha-beta + improvements (searching up to 40 ply 
deep)

- Searched over 200 million positions per second
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Chess

• There are now apps 
that are on par with 
human champions

• Is Chess still a human 
game or have 
computers conquered 
it?
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Backgammon
• TD-Gammon (Gerry Tesauro at IBM)

• One of the top players in the world

• Searches only two moves ahead!

• Its secret: One amazing evaluation function

- Neural network trained with reinforcement learning during ~1 
million games played against itself

- Humans play backgammon differently now, based on what 
TD-Gammon learned about the game

- Very cool AI ☺
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Go
• Large branching factor 

makes Go too large to 
solve by classic search 
methods

• pieces added to the board

• evaluation function

• ...

• Limited progress for 
decades
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Go

• BUT computer Go has undergone a 
revolution in the past ~5 years

- Close to perfection on 7x7 games

- Reached top human level on 9x9 games

- Still weaker than top humans on 19x9 
boards
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Go
• Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of simulated 
plays

Upper Confidence 
Bounds for Trees 
(UCT): “Minimax 
search” using UCB
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Card Games

• Focus has been on Bridge and Poker

- Humans are still winning...

- But machines are catching up!

• Issues

- Stochastic and partially observable
- Ideas discussed today don’t work well

- New approaches are being developed
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