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Introduction

e So far have only been concerned with
single agents

e Today

- Multiple agents planning against each other

- Adversarial settings



Outline

Games

Minimax search
Alpha-beta pruning
Evaluation functions
Coping with chance

Game programs



(Games

e (Games are the oldest, most well-studied domain in Al
o Why?

- They are fun

- Easy to represent, rules are clear

- State spaces can be very large

- In chess, the search tree has ~10154 nodes

- Like the “real world” in that decisions have to be made and
time is important

- Easy to determine when a program is doing well



Types of Games

e Perfect vs Imperfect Information

- Perfect information: You can see the entire state of the
game

- Imperfect information:

e Deterministic vs Stochastic

- Deterministic: change in state is fully controlled by the
players

- Stochastic: change in state is partially determined by
chance



(Games as Search Problems

o 2-player perfect information game

e State: board configuration plus the player who’s turn it is to
move

e Successor function: given a state, returns a list of
(move,state) pairs indicating legal move and resulting state

e Terminal state: states where there is a win/loss/draw
o Utility function: assigns a numerical value to terminal states

e Solution: a strategy (way of picking moves) that wins the
game



Game Search Challenge

e \What makes game search challenging?

- There is an opponent

- The opponent is malicious

- it wants to win (by making you lose)

- We need to take this into account when choosing moves

e Notation:

- MAX player wants to maximize its utility

- MIN player wants to minimize its utility
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Optimal Strategies

e |n standard search

- Optimal solution is sequence of moves leading to winning
terminal state

e Strategy (from MAX’s perspective)
- Specify a move for the initial state

- Specify a move for all possible states arising from MIN’s
response

- Then all possible responses to all of MIN’s responses to
MAX’s previous moves



Optimal Strategies

e Goal: Find optimal strategy

e \What do we mean by optimal?

- Strategy that leads to outcomes at least as good as
any other strategy, given that MIN is playing optimally

- Equilibrium (game theory)

e Today we focus mainly on zero-sum games of
perfect information

- Easy games according to game theory



Minimax Value

MINIMAX-VALUE(n) =

Utility(n) if nis a ferminal state

Max, i, sycery MINIMAX-VALUE(s) if nis a MAX node
Ming i, suceny MINIMAX-VALUE(s) is n is a MIN node

MAX

MIN




Properties of Minimax

e Complete if tree is finite
e Time complexity: O(b™)
- m is depth of tree
e Space complexity: O(bm)
- ltis DFS

e Optimal against an optimal opponent

- |f opponent is not playing optimally, then may be better
off doing something else



Minimax and Multi-Player

Games
to move
A
B (1,2,6)
A

(]’236) (4’233) (6,])2) (7,43']) (59'13'1) (']95,2) (7373']) (5’4’5)



Question

e Can we now write a program that will
play chess reasonably well?



Question

e Can we now write a program that will
play chess reasonably well

- For chess b~35 and m~100



Alpha-Beta Pruning

e |[f we are smart (and lucky) we can do
pruning

- Eliminate large parts of the tree from consideration
e Alpha-beta pruning applied to a minimax tree

- Returns the same decision as minimax

- Prunes branches that cannot influence final
decision



Alpha-Beta Pruding

e Alpha:

- Value of best (highest value) choice we have found so far on
path for MAX

e Beta:

- Value of best (lowest value) choice we have found so far on

path for M
e Update alp

N

na and beta as search continues

e Prune as soon as value of current node is known to be
worse than current alpha or beta values for MAX or MIN



Example
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Properties of Alpha-Beta

e Pruning does not affect the final result
- Why?
e Move ordering is important

¢ Alpha-beta demonstrates the value of
reasoning about which computations
are important
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Real-Time Decisions

e Alpha-Beta can be a huge improvement
over minimax

- Still not good enough

- Need to search to terminal states for at least part of search
space

- Need to make decisions quickly

e Solution

- Heuristic evaluation function + cutoff tests
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Evaluation Functions

e Apply an evaluation function to a state

- If terminal state, function returns actual
utility

- |f non-terminal, function returns estimate of
the expected utility

e Function must be fast to compute

25



Evaluation Functions

e How do we get evaluation functions?

- Expert knowledge

- Learned from experience

e | ook for features of states

- Weighted linear function Eval(s)=2i wifi(s)
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Cutting Off Search

e Do we have to search to terminal states?

- No! Cut search early and apply evaluation function
e When?

- Arbitrarily (but deeper is better)

- Quiescent states

- States that are “stable”

- Singular extensions

- Searching deeper when you have a move that is “clearly better”

- Can be used to avoid the horizon effect
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Cutting Off Search

e How deep?
- Novice player
-  5-ply (minimax)
- Master player
- 10-ply (alpha-beta)

- Grandmaster

- 14-ply + fantastic evaluation function, opening and endgame
databases,...
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Stochastic Games

MAX /\
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1/36 1/18 1/18 1/36

1, 6, *

MAX /\ /\ /\ /\
TERMINAL 2 -1 1 -1 1
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Stochastic Games

e Need to consider best/worst cases +
probability they will occur

¢ Recall: Expected value of a random
variable x E[X]=> xin x P(X)X

e Expectiminimax: minimax but at
chance nodes compute the expected
value
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Expectiminimax

CHANCE 3O () -1

0.5 0.5 0.5 0.5

MIN 2\/ 4\ / o\/ -2\/

2 4 7 4 6 0 5 -2
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Expectiminimax

DICE

MIN

2 23 3 1 1 4 4 20 20 30 30 1 1 400 400

WARNING: exact values do matter! Order-preserving
transformations of the evaluation function can change the choice
of moves. Must have positive linear transformations only
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Summary

Games pose lots of fascinating challenges for
Al researchers

Minimax search allows us to play optimally
against an optimal opponent

Alpha-beta pruning allows us to reduce the
search space

A good evaluation function is key to doing well

Games are fun!
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Some Game Programs




Checkers

Mr. Tinsley suffered his 4th and 5th losses ever
against Chinook
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Checkers

e Chinook (University of Alberta)
- World Man-Machine Checkers Champion
- Alpha-beta search

- Opening database

e Secret weapon: Endgame database

- Perfect knowledge into the search

e Checkers is now dominated by computers

- Checkers is (weakly) solved
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Chess: Kasparov vs. Deep Blue

: @ACM Chess Cha

Garry Kaspa
. vs

1997: Deep Blue wins
by 3 wins, 1 loss, and

2 draws

Kasparov Deep Blue
5'10" Height 6' 5"
176 Ibs Weight 2,400 Ibs
34 years Age 4 years
50 billion neurons Computers 32 RISC processors

+ 256 VLST chess engines
2 pos/sec Speed 200,000,000 pos/sec
Extensive Knowledge Primitive
Electrical/chemical Power Source Electrical
Enormous Ego None

Jonathan Schaeffer
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Chess

e |tS secret:

- Specialized chess processor + special-purpose
memory optimization

- Very sophisticated evaluation function

- Expert features and hand-tuned weights

- Opening and closing books

- Alpha-beta + improvements (searching up to 40 ply
deep)

- Searched over 200 million positions per second
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Chess

e There are now apps
that are on par with T
human champions Kramnik ...

Deep Fritz

m presents

e |s Chess still a human
game or have

computers conguered
it?
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Backgammon

TD-Gammon (Gerry Tesauro at IBM)
One of the top players in the world
Searches only two moves ahead!

lts secret: One amazing evaluation function

- Neural network trained with reinforcement learning during ~1
million games played against itself

- Humans play backgammon differently now, based on what
TD-Gammon learned about the game

- Very cool Al ®
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Go

e Large branching factor
makes Go too large to

solve by classic search %. i _;__‘# “;*
methods ol 7+:i0 iy
e pieces added to the board ng 'Q Og
e evaluation function g—-‘:’ Wi

e Limited progress for
decades
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Go

e BUT computer Go has undergone a
revolution in the past ~5 years

- Close to perfection on 7x7 games
- Reached top human level on 9x9 games

- Still weaker than top humans on 19x9
boards
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Go

e Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of simulated
plays

Repeated X times

Selection - Expansion - Simulation -~ Backpropagation

g

Upper Confidence

Bounds for Trees In N
(UCT): “Minimax v, + C
search” using UCB

AVAVE

Figure from Chaslot (2006)
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Card Games

e Focus has been on Bridge and Poker
- Humans are still winning...
- But machines are catching up!

® |ssues

- Stochastic and partially observable

- ldeas discussed today don’t work well

- New approaches are being developed
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