Adversarial Search

CS 486/686: Introduction to Artificial Intelligence
Winter 2016

Introduction

e So far have only been concerned with
single agents

e Today

- Multiple agents planning against each other

- Adversarial settings

Outline

Games

Minimax search
Alpha-beta pruning
Evaluation functions
Coping with chance

Game programs

(Games

e (Games are the oldest, most well-studied domain in Al
o Why?

- They are fun

- Easy to represent, rules are clear

- State spaces can be very large

- In chess, the search tree has ~10154 nodes

- Like the “real world” in that decisions have to be made and
time is important

- Easy to determine when a program is doing well

Types of Games

e Perfect vs Imperfect Information

- Perfect information: You can see the entire state of the
game

- Imperfect information:

e Deterministic vs Stochastic

- Deterministic: change in state is fully controlled by the
players

- Stochastic: change in state is partially determined by
chance

(Games as Search Problems

o 2-player perfect information game

e State: board configuration plus the player who’s turn it is to
move

e Successor function: given a state, returns a list of
(move,state) pairs indicating legal move and resulting state

e Terminal state: states where there is a win/loss/draw
o Utility function: assigns a numerical value to terminal states

e Solution: a strategy (way of picking moves) that wins the
game

Game Search Challenge

e \What makes game search challenging?

- There is an opponent

- The opponent is malicious

- it wants to win (by making you lose)

- We need to take this into account when choosing moves

e Notation:

- MAX player wants to maximize its utility

- MIN player wants to minimize its utility

MAX (X)
X X X
MIN (O) X " -
X X X
X0 X 0 X
MAX (X) o
X0 X X0 X0 ' . c
MIN () X X MAX's job is to use the
search tree to
, determine the best
‘ \ \ move
X0 X X0l X X 0l X
TERMINAL 0l X Q0 X X
(@) X/ X0 X 0[O0
Utility 1 0 +1

Optimal Strategies

e |n standard search

- Optimal solution is sequence of moves leading to winning
terminal state

e Strategy (from MAX’s perspective)
- Specify a move for the initial state

- Specify a move for all possible states arising from MIN’s
response

- Then all possible responses to all of MIN’s responses to
MAX’s previous moves

Optimal Strategies

e Goal: Find optimal strategy

e \What do we mean by optimal?

- Strategy that leads to outcomes at least as good as
any other strategy, given that MIN is playing optimally

- Equilibrium (game theory)

e Today we focus mainly on zero-sum games of
perfect information

- Easy games according to game theory

Minimax Value

MINIMAX-VALUE(n) =

Utility(n) if nis a ferminal state

Max, i, sycery MINIMAX-VALUE(s) if nis a MAX node
Ming i, suceny MINIMAX-VALUE(s) is n is a MIN node

MAX

MIN

Properties of Minimax

e Complete if tree is finite
e Time complexity: O(b™)
- m is depth of tree
e Space complexity: O(bm)
- ltis DFS

e Optimal against an optimal opponent

- |f opponent is not playing optimally, then may be better
off doing something else

Minimax and Multi-Player

Games
to move
A
B (1,2,6)
A

(]’236) (4’233) (6,])2) (7,43']) (59'13'1) (']95,2) (7373']) (5’4’5)

Question

e Can we now write a program that will
play chess reasonably well?

Question

e Can we now write a program that will
play chess reasonably well

- For chess b~35 and m~100

Alpha-Beta Pruning

e |[f we are smart (and lucky) we can do
pruning

- Eliminate large parts of the tree from consideration
e Alpha-beta pruning applied to a minimax tree

- Returns the same decision as minimax

- Prunes branches that cannot influence final
decision

Alpha-Beta Pruding

e Alpha:

- Value of best (highest value) choice we have found so far on
path for MAX

e Beta:

- Value of best (lowest value) choice we have found so far on

path for M
e Update alp

N

na and beta as search continues

e Prune as soon as value of current node is known to be
worse than current alpha or beta values for MAX or MIN

Example

MAX / > 3
3

MIN

Example

MAX [3,00]

MIN 3 v)

Prune
remaining
children

12

w

Example

[3,00]

MAX

<14

20

Example

[3,00]

MAX

22

Properties of Alpha-Beta

e Pruning does not affect the final result
- Why?
e Move ordering is important

¢ Alpha-beta demonstrates the value of
reasoning about which computations
are important

23

Real-Time Decisions

e Alpha-Beta can be a huge improvement
over minimax

- Still not good enough

- Need to search to terminal states for at least part of search
space

- Need to make decisions quickly

e Solution

- Heuristic evaluation function + cutoff tests

24

Evaluation Functions

e Apply an evaluation function to a state

- If terminal state, function returns actual
utility

- |f non-terminal, function returns estimate of
the expected utility

e Function must be fast to compute

25

Evaluation Functions

e How do we get evaluation functions?

- Expert knowledge

- Learned from experience

e | ook for features of states

- Weighted linear function Eval(s)=2i wifi(s)

26

Cutting Off Search

e Do we have to search to terminal states?

- No! Cut search early and apply evaluation function
e When?

- Arbitrarily (but deeper is better)

- Quiescent states

- States that are “stable”

- Singular extensions

- Searching deeper when you have a move that is “clearly better”

- Can be used to avoid the horizon effect

27

Cutting Off Search

e How deep?
- Novice player
- 5-ply (minimax)
- Master player
- 10-ply (alpha-beta)

- Grandmaster

- 14-ply + fantastic evaluation function, opening and endgame
databases,...

28

Stochastic Games

MAX /\
CHANCE () @ @ @ @
:}/36 :1|/18 1/18 /36

MIN \/ N NV \/
CHANCE () @ - .- L

1/36 1/18 1/18 1/36

1, 6, *

MAX /\ /\ /\ /\
TERMINAL 2 -1 1 -1 1

29

Stochastic Games

e Need to consider best/worst cases +
probability they will occur

¢ Recall: Expected value of a random
variable x E[X]=> xin x P(X)X

e Expectiminimax: minimax but at
chance nodes compute the expected
value

30

Expectiminimax

CHANCE 3O () -1

0.5 0.5 0.5 0.5

MIN 2\/ 4\ / o\/ -2\/

2 4 7 4 6 0 5 -2

31

Expectiminimax

DICE

MIN

2 23 3 1 1 4 4 20 20 30 30 1 1 400 400

WARNING: exact values do matter! Order-preserving
transformations of the evaluation function can change the choice
of moves. Must have positive linear transformations only

32

Summary

Games pose lots of fascinating challenges for
Al researchers

Minimax search allows us to play optimally
against an optimal opponent

Alpha-beta pruning allows us to reduce the
search space

A good evaluation function is key to doing well

Games are fun!

33

Some Game Programs

Checkers

Mr. Tinsley suffered his 4th and 5th losses ever
against Chinook

35

Checkers

e Chinook (University of Alberta)
- World Man-Machine Checkers Champion
- Alpha-beta search

- Opening database

e Secret weapon: Endgame database

- Perfect knowledge into the search

e Checkers is now dominated by computers

- Checkers is (weakly) solved

36

Chess: Kasparov vs. Deep Blue

: @ACM Chess Cha

Garry Kaspa
. vs

1997: Deep Blue wins
by 3 wins, 1 loss, and

2 draws

Kasparov Deep Blue
5'10" Height 6' 5"
176 Ibs Weight 2,400 Ibs
34 years Age 4 years
50 billion neurons Computers 32 RISC processors

+ 256 VLST chess engines
2 pos/sec Speed 200,000,000 pos/sec
Extensive Knowledge Primitive
Electrical/chemical Power Source Electrical
Enormous Ego None

Jonathan Schaeffer
37

Chess

e |tS secret:

- Specialized chess processor + special-purpose
memory optimization

- Very sophisticated evaluation function

- Expert features and hand-tuned weights

- Opening and closing books

- Alpha-beta + improvements (searching up to 40 ply
deep)

- Searched over 200 million positions per second

38

Chess

e There are now apps
that are on par with T
human champions Kramnik ...

Deep Fritz

m presents

e |s Chess still a human
game or have

computers conguered
it?

39

Backgammon

TD-Gammon (Gerry Tesauro at IBM)
One of the top players in the world
Searches only two moves ahead!

lts secret: One amazing evaluation function

- Neural network trained with reinforcement learning during ~1
million games played against itself

- Humans play backgammon differently now, based on what
TD-Gammon learned about the game

- Very cool Al ®

40

Go

e Large branching factor
makes Go too large to

solve by classic search %. i _;__‘# “;*
methods ol 7+:i0 iy
e pieces added to the board ng 'Q Og
e evaluation function g—-‘:’ Wi

e Limited progress for
decades

41

Go

e BUT computer Go has undergone a
revolution in the past ~5 years

- Close to perfection on 7x7 games
- Reached top human level on 9x9 games

- Still weaker than top humans on 19x9
boards

42

Go

e Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of simulated
plays

Repeated X times

Selection - Expansion - Simulation -~ Backpropagation

g

Upper Confidence

Bounds for Trees In N
(UCT): “Minimax v, + C
search” using UCB

AVAVE

Figure from Chaslot (2006)

43

Card Games

e Focus has been on Bridge and Poker
- Humans are still winning...
- But machines are catching up!

® |ssues

- Stochastic and partially observable

- ldeas discussed today don’t work well

- New approaches are being developed

44

