
Classical Planning

CS 486/686: Introduction to Artificial Intelligence
Winter 2016

1

Classical Planning
A plan is a collection of actions for performing
some task (reaching some goal)

If we have a robot we want
the robot to

1. Decide what to do, and

2. Figure out what actions
it needs to do in order
to accomplish its goals

2

Classical Planning
We want to change the world to suit our needs.
Problem: Need to reason about what the world will be like after
taking certain actions

3

Goal: Kate has coffee and has food
in the fridge and the bookshelf is
fixed

Currently: Robot is at home, has no
coffee, coffee is not made, no food in
the fridge, …

To Do: Go to the kitchen, make
coffee, bring it to Kate, go to the
store,…

Planning

• Planning is basically searching over
sets of states while also reasoning over
the effects of actions

• Optimal plan will be the one with
smallest number of actions

• This is a lot like search BUT

- Representation is extremely important

4

Planning vs Search
Consider the task get milk, bananas, and a hammer.
Standard search fails miserably

5

Planning Languages
• By using a structured and restricted planning

language we can do better than standard
search algorithms

- Connect state and action descriptions

- Allow the adding of actions in any order

- Establish independent subproblems and solve the
separately

6

STRIPS
Stanford Research Institute Problem Solver

7

Domain
• Set of typed objects (usually represented as propositions)

• B and Shakey are OK, but x and Robot(x) are not

States
• Conjunctions of first-order predicates over objects

• On(A,B)∧On(B,C) is allowed but not On(x,y)∧On(y,z)

Closed-World Assumption
• Any conditions not mentioned in a state are assumed to be

false

• This is required to overcome the Frame Problem

Block World

8

A
C

B

Domain: A, B and C

States:
OnTable(A)∧OnTable(B)∧On(C,A)∧HandEmpty()

STRIPS

9

Goals
• Conjunctions of positive ground literals

• OnTable(A)∧On(B,A)∧On(B,C)∧HandEmpty()

A
C

B A

C
B

STRIPS

10

Actions are specified by their preconditions and
their effects
Fly(p, from , to)

PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)

EFFECT: ~At(p,from)∧At(p,to)

Name and parameter list

Description of what must be
true in order for the action to be
executed. (Conjunction of
function-free positive literals)Description of how the state

changes when the action is
executed. Variables in the
effect must be included in the
original parameter list.

Effects are sometimes represented as
Add-lists and Delete-lists.
Add-list: propositions that become true
Delete-list: propositions that become false

STRIPS
Semantics:
• If the precondition is false in a world state then the action changes

nothing (it can not be applied)

• If the precondition is true

• Delete items from the Delete-list

• Add items in the Add-list

• Order of operations is important

Solution:
• Action sequence that when executed in the start state results in a

state that satisfies the goal

11

Strips Assumption
Every literal not mentioned
in an effect stays the same

Example
• Init(At(Flat,Axle)^ At(Spare,Trunk))

• Goal(At(Spare, Axle))

• Action(Remove(Spare, Trunk),
– PRECOND: At(Spare, Trunk)
– EFFECT: ~At(Spare,Trunk)^ At(Spare, Ground))

• Action(Remove(Flat, Axle),
– PRECOND: At(Flat, Axle)
– EFFECT: ~At(Flat, Axle)^ At(Flat,Ground)^ Clear(Axle)

• Action(PutOn(Spare, Axle),
– PRECOND: At(Spare,Ground)^ Clear(Axle)
– EFFECT: ~At(Spare, Ground)^ At(Spare, Axle))

• Action(LeaveOverNight,
– PRECOND:
– EFFECT: ~At(Spare, Ground)^ ~At(Spare,Axle)^ ~At(Spare, Trunk)^~At(Flat,

Ground)^ ~At(Flat, Axle)

12

Example

13

Define the action Move object from
someplace to another place

A
C

B

Planning as Search
• Progression Planning (Forward Planning)

• This is precisely search like we saw earlier in the course

• You need good heuristics but these can be domain
independent

• Regression Planning (Backward Planning)
• Start from the goal state

• Find consistent, relevant actions

• Consistent: it can not undo any desired literals

• Relevant: it must achieve one of the conjuncts of the
goal

14

Example

15

A C B A B
C

Initial State:
Clear(c)
Clear(a)
Clear(b)
OnTable(b)
OnTable(a)
OnTable(c)
HandEmpty()

Goal:
Clear(a)
Clear(c)
On(b,c)

Pickup(x)
P: OnTable(x), Clear(x), HandEmpty
E: Holding(x), ~OnTable(x), ~HandEmpty

PutDown(x)
P: Holding(x)
E: OnTable(x), Clear(x), HandEmpty,
 ~Holding(x)

Stack(x,y)
P: Holding(x), Clear(y)
E: On(x,y), Clear(x),
 HandEmpty, ~Clear(y),
 ~Holding(x)

UnStack(x,y)
P: Clear(x), On(x,y), HandEmpty
E: Clear(y), Holding(x),
 ~Clear(x), ~On(x,y),
 ~HandEmpty

Planning Graphs
It can be useful to represent planning problems as
planning graphs

- For deriving heuristics

- For running particular algorithms

16

Planning graphs consist of levels
• S0 has a node for each literal that holds in the initial state
• A0 has nodes for each action that could be taken in S0
• Si contains all literals that could hold given the actions taken in level Ai-1

• Ai contains all actions who’s preconditions could hold in Si

A0 A1

Planning Graphs

17

Init: Have (Cake)
Goal: Have(Cake)∧Eaten(Cake)

Action: Eat(Cake)
PRECOND: Have(Cake)
EFFECT: ~Have(Cake)∧Eaten(Cake)

Action: Bake(Cake)
PRECOND: ~Have(Cake)
EFFECT: Have(Cake)

Planning Graphs

18

Persistence Actions: Once a literal appears, then it can persist if no action
negates it (no-op)

Mutual Exclusion Links (Mutex): Record conflicts between actions that can
not occur together

Planning Graphs

19

Mutual Exclusion Links (Mutex): Record conflicts between
actions that can not occur together

• Inconsistent Effects: (actions) An effect of one negates the effect of
another

• Interference: (actions) One deletes a precondition of another
• Competing Needs: (actions) Mutually inconsistent preconditions
• Inconsistent Support: (states) One is a negation of another OR all ways

of achieving them are mutually exclusive

Using Planning Graphs

Observations

• Graph is polynomial in the size of the planning
problem.

• If any goal literal does not appear in the final
level then the problem is unsolvable.

20

Using Planning Graphs

Heuristics
• For a single goal literal g, the level in which it first appears is an

admissible heuristic (level-cost(g))

• For multiple goal literals (g1∧g2∧…)

• Max-level heuristic: Max level-cost(gi) (admissible)

• Level-sum heuristic: ∑ level-cost(gi) (may be inadmissible)

• Set-level heuristic: Level where all goal literals appear and are
not mutex (admissible and dominates max-level)

21

Example: Planning Graphs

22

Level-cost?
Max-level?
Level-sum?
Set-level?

GraphPlan

• Start with an empty graph

• Iterate until you find a solution

- Graph expansion

- Analyze graph for mutex

- Check if there is a possible solution

- If yes, extract-solution

23

GraphPlan
Solution extraction is backward search through the
planning graph
Extract-Solution(SG,t)

• If t=0 return solution

• For each proposition s in SG

• Choose an action in At-1 to achieves s

• If any pair of actions chosen are mutex then backtrack

• SG’ = set of preconditions for chosen actions

• Extract-Solution(SG’, t-1)

24

Example

25

• Init(At(Flat,Axle)^ At(Spare,Trunk))

• Goal(At(Spare, Axle))

• Action(Remove(Spare, Trunk),
– PRECOND: At(Spare, Trunk)
– EFFECT: ~At(Spare,Trunk)^ At(Spare, Ground))

• Action(Remove(Flat, Axle),
– PRECOND: At(Flat, Axle)
– EFFECT: ~At(Flat, Axle)^ At(Flat,Ground)^ Clear(Axle)

• Action(PutOn(Spare, Axle),
– PRECOND: At(Spare,Ground)^ Clear(Axle)
– EFFECT: ~At(Spare, Ground)^ At(Spare, Axle))

• Action(LeaveOverNight,
– PRECOND:
– EFFECT: ~At(Spare, Ground)^ ~At(Spare,Axle)^ ~At(Spare, Trunk)^~At(Flat, Ground)^

~At(Flat, Axle)

Example

26

GraphPlan Properties
• Sound and complete

- Search must terminate
- Any plan found is a sound plan

• Optimal
- Finds shortest length plan assuming that multiple

actions may occur at the same time

• Time complexity
- Polynomial time to construct the planning graph
- However planning is PSPACE-complete. Thus,

extraction may be intractable
27

