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Classical Planning
A plan is a collection of actions for performing 
some task (reaching some goal)

If we have a robot we want 
the robot to 

1. Decide what to do, and 

2. Figure out what actions 
it needs to do in order 
to accomplish its goals
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Classical Planning
We want to change the world to suit our needs.
Problem: Need to reason about what the world will be like after 
taking certain actions
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Goal: Kate has coffee and has food 
in the fridge and the bookshelf is 
fixed

Currently: Robot is at home, has no 
coffee, coffee is not made, no food in 
the fridge, …

To Do: Go to the kitchen, make 
coffee, bring it to Kate, go to the 
store,…



Planning

• Planning is basically searching over 
sets of states while also reasoning over 
the effects of actions

• Optimal plan will be the one with 
smallest number of actions

• This is a lot like search BUT

- Representation is extremely important
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Planning vs Search
Consider the task get milk, bananas, and a hammer.
Standard search fails miserably
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Planning Languages
• By using a structured and restricted planning 

language we can do better than standard 
search algorithms

- Connect state and action descriptions

- Allow the adding of actions in any order

- Establish independent subproblems and solve the 
separately 
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STRIPS
Stanford Research Institute Problem Solver
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Domain
• Set of typed objects (usually represented as propositions)

• B and Shakey are OK, but x and Robot(x) are not

States
• Conjunctions of first-order predicates over objects

• On(A,B)∧On(B,C) is allowed but not On(x,y)∧On(y,z)

Closed-World Assumption
• Any conditions not mentioned in a state are assumed to be 

false 

• This is required to overcome the Frame Problem



Block World
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A
C

B

Domain: A, B and C

States:
OnTable(A)∧OnTable(B)∧On(C,A)∧HandEmpty() 



STRIPS
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Goals
• Conjunctions of positive ground literals

• OnTable(A)∧On(B,A)∧On(B,C)∧HandEmpty()

A
C

B A

C
B



STRIPS
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Actions are specified by their preconditions and 
their effects
Fly(p, from , to)

PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
 
EFFECT: ~At(p,from)∧At(p,to)

Name and parameter list

Description of what must be 
true in order for the action to be 
executed. (Conjunction of 
function-free positive literals)Description of how the state 

changes when the action is 
executed. Variables in the 
effect must be included in the 
original parameter list.

Effects are sometimes represented as 
Add-lists and Delete-lists.
Add-list: propositions that become true
Delete-list: propositions that become false



STRIPS
Semantics:
• If the precondition is false in a world state then the action changes 

nothing (it can not be applied)

• If the precondition is true

• Delete items from the Delete-list

• Add items in the Add-list 

• Order of operations is important

Solution:
• Action sequence that when executed in the start state results in a 

state that satisfies the goal
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Strips Assumption
Every literal not mentioned 
in an effect stays the same



Example
• Init(At(Flat,Axle)^ At(Spare,Trunk))

• Goal( At(Spare, Axle))

• Action(Remove(Spare, Trunk),
– PRECOND: At(Spare, Trunk)
– EFFECT: ~At(Spare,Trunk)^ At(Spare, Ground))

• Action(Remove(Flat, Axle),
– PRECOND: At(Flat, Axle)
– EFFECT: ~At(Flat, Axle)^ At(Flat,Ground)^ Clear(Axle)

• Action(PutOn(Spare, Axle),
– PRECOND: At(Spare,Ground)^ Clear(Axle)
– EFFECT: ~At(Spare, Ground)^ At(Spare, Axle))

• Action(LeaveOverNight,
– PRECOND: 
– EFFECT: ~At(Spare, Ground)^ ~At(Spare,Axle)^ ~At(Spare, Trunk)^~At(Flat, 

Ground)^ ~At(Flat, Axle)
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Example
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Define the action Move object from 
someplace to another place

A
C

B



Planning as Search
• Progression Planning (Forward Planning)

• This is precisely search like we saw earlier in the course

• You need good heuristics but these can be domain 
independent

• Regression Planning (Backward Planning)
• Start from the goal state

• Find consistent, relevant actions

• Consistent: it can not undo any desired literals

• Relevant: it must achieve one of the conjuncts of the 
goal
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Example
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A C B A B
C

Initial State:
Clear(c)
Clear(a)
Clear(b)
OnTable(b)
OnTable(a)
OnTable(c)
HandEmpty()

Goal:
Clear(a)
Clear(c)
On(b,c)

Pickup(x)
P: OnTable(x), Clear(x), HandEmpty
E: Holding(x), ~OnTable(x), ~HandEmpty

PutDown(x)
P: Holding(x)
E: OnTable(x), Clear(x), HandEmpty,
   ~Holding(x)

Stack(x,y)
P: Holding(x), Clear(y)
E: On(x,y), Clear(x),
   HandEmpty, ~Clear(y), 
   ~Holding(x)

UnStack(x,y)
P: Clear(x), On(x,y), HandEmpty
E: Clear(y),  Holding(x), 
   ~Clear(x), ~On(x,y),
   ~HandEmpty



Planning Graphs
It can be useful to represent planning problems as 
planning graphs

- For deriving heuristics

- For running particular algorithms
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Planning graphs consist of levels
• S0 has a node for each literal that holds in the initial state
• A0 has nodes for each action that could be taken in S0
• Si contains all literals that could hold given the actions taken in level Ai-1

• Ai contains all actions who’s preconditions could hold in Si

A0 A1



Planning Graphs
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Init: Have (Cake)
Goal: Have(Cake)∧Eaten(Cake)

Action: Eat(Cake)
PRECOND: Have(Cake)
EFFECT: ~Have(Cake)∧Eaten(Cake)

Action: Bake(Cake)
PRECOND: ~Have(Cake)
EFFECT: Have(Cake)



Planning Graphs
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Persistence Actions: Once a literal appears, then it can persist if no action 
negates it (no-op)

Mutual Exclusion Links (Mutex):  Record conflicts between actions that can 
not occur together



Planning Graphs
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Mutual Exclusion Links (Mutex):  Record conflicts between 
actions that can not occur together

• Inconsistent Effects:  (actions) An effect of one negates the effect of 
another

• Interference: (actions) One deletes a precondition of another
• Competing Needs: (actions) Mutually inconsistent preconditions
• Inconsistent Support: (states) One is a negation of another OR all ways 

of achieving them are mutually exclusive



Using Planning Graphs

Observations

• Graph is polynomial in the size of the planning 
problem.

• If any goal literal does not appear in the final 
level then the problem is unsolvable.
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Using Planning Graphs

Heuristics 
• For a single goal literal g, the level in which it first appears is an 

admissible heuristic (level-cost(g))

• For multiple goal literals (g1∧g2∧…)

• Max-level heuristic:  Max level-cost(gi) (admissible)

• Level-sum heuristic: ∑ level-cost(gi) (may be inadmissible)

• Set-level heuristic: Level where all goal literals appear and are 
not mutex (admissible and dominates max-level)
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Example: Planning Graphs
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Level-cost?
Max-level?
Level-sum?
Set-level?



GraphPlan

• Start with an empty graph

• Iterate until you find a solution

- Graph expansion

- Analyze graph for mutex

- Check if there is a possible solution

- If yes, extract-solution
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GraphPlan
Solution extraction is backward search through the 
planning graph
Extract-Solution(SG,t)

• If t=0 return solution

• For each proposition s in SG 

• Choose an action in At-1 to achieves s

• If any pair of actions chosen are mutex then backtrack

• SG’ = set of preconditions for chosen actions

• Extract-Solution(SG’, t-1)
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Example
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• Init(At(Flat,Axle)^ At(Spare,Trunk))

• Goal( At(Spare, Axle))

• Action(Remove(Spare, Trunk),
– PRECOND: At(Spare, Trunk)
– EFFECT: ~At(Spare,Trunk)^ At(Spare, Ground))

• Action(Remove(Flat, Axle),
– PRECOND: At(Flat, Axle)
– EFFECT: ~At(Flat, Axle)^ At(Flat,Ground)^ Clear(Axle)

• Action(PutOn(Spare, Axle),
– PRECOND: At(Spare,Ground)^ Clear(Axle)
– EFFECT: ~At(Spare, Ground)^ At(Spare, Axle))

• Action(LeaveOverNight,
– PRECOND: 
– EFFECT: ~At(Spare, Ground)^ ~At(Spare,Axle)^ ~At(Spare, Trunk)^~At(Flat, Ground)^ 

~At(Flat, Axle)



Example
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GraphPlan Properties
• Sound and complete

- Search must terminate 
- Any plan found is a sound plan

• Optimal 
- Finds shortest length plan assuming that multiple 

actions may occur at the same time 

• Time complexity
- Polynomial time to construct the planning graph
- However planning is PSPACE-complete. Thus, 

extraction may be intractable
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