
Constraint
Satisfaction

CS 486/686: Introduction to Artificial Intelligence
Winter 2016

1

Outline
• What are Constraint Satisfaction

Problems (CSPs)?

• Standard Search and CSPs

• Improvements

- Backtracking

- Backtracking + heuristics

- Forward Checking

2

Introduction
Standard search

State is a “black box”: arbitrary
data structure

Goal test: any function over
states

Successor function: anything
that lets you move from one
state to another

3

Constraint satisfaction
problems (CSPs)

A special subset of search
problems

States are defined by variables Xi
with values from domains Di

Goal test is a set of constraints
specifying allowable combinations
of values for subsets of variables

Example: Map Colouring
• Variables

• V={T, V, NSW, Q, NT, WA, SA}

• Domains

• D={red, blue, green}

• Constraints: adjacent regions must have different
colours

• Implicit: WA≠NT

• Explicit: (WA, NT)∈ {(red, blue), (red, green), (blue,
red)…}

• Solution is an assignment satisfying all constraints

• {WA=red, NT=green, Q=red, NSW=green, V=red,
SA=blue, T=green}

4

N Queens Problem

• Variables: Xi,j

• Domains: {0,1}

• Constraints:

5

 N Queens Problem
• Variables: Qi

• Domains: {1,2,…,N}

• Constraints:

• Implicit:

• Explict:

6

8i, j non-threatening(Qi, Qj)

(Q1, Q2) 2 {(1, 3), (1, 4), . . .}
. . .

3 Sat

7

• Variables: V1,…, Vn

• Domains: {0,1}
• Constraints:

• K constraints of the form Vi*∨Vj*∨Vk* Vi* where Vi*
is either Vi or ¬Vi

A canonical NP-complete
 problem

A¬B _ ¬C
¬A _B _D

D _B _ E

¬A _ ¬B _ C

Types of CSPs
• Discrete Variables

• Finite domains
• If domain has size d, then there are O(dn) complete

assignments
• Boolean CSPs (including 3-SAT)

• Infinite domains (e.g. integers)
• Constraint languages
• Linear constraints are solvable but non-linear are

undecidable

• Continuous Variables
• Linear programming (linear constraints solvable in

polynomial time)

8

Types of CSPs
• Varieties of Constraints

• Unary constraints: involve a single variable
• NSW≠red

• Binary constraints: involve a pair of variables
• NSW≠Q

• Higher-order constraints: involve more than two
variables
• AllDiff(V1,…,Vn)

• Soft Constraints (preferences)
• red “is better than” green
• Constrained optimization problems
• (we will revisit these later in the semester)time)

9

Constraint Graphs

10

You can represent binary
constraints with a
constraint graph

Nodes are variables

Edges are constraints

T
WA

NT

SA

Q

NSW

V

CSPs and Search

11

We can use standard search to solve CSPs

States: Partial assignments of values to variables
Initial State: Empty assignment, {}
Successor Function: Assign a value to an
unassigned variable
Goal Test: The current assignment is complete
and satisfies all constraints

T
WA

NT

SA

Q

NSW

V

CSPs and Search

12

States: Partial assignments of
values to variables
Initial State: Empty assignment, {}
Successor Function: Assign a
value to an unassigned variable
Goal Test: The current assignment
is complete and satisfies all
constraints

T

WA

NT

SA

Q

NSW

V

What happens if we run
something like BFS?

Commutativity

13

Key Insight:
• CSPs are commutative

• Order of actions taken does not
effect outcome

• Can assign variables in any order

• CSP algorithms take advantage of this
• Consider possible assignments for a

single variable at each node in the
search tree

{WA=red, NT=blue}
is equivalent to

{NT=blue, WA=red}

T
WA

NT

SA

Q

NSW

V

Backtracking Search

• Select unassigned variable X

• For each value {x1,...,xn} in domain of X

- If value satisfies constraints, assign X=xi and exit loop

• If an assignment is found

- Move to next variable

• If no assignment found

- Back up to preceding variable and try a different assignment for
it

14

Backtracking search is the basic algorithm for CSPs
One variable at

a time

Check
constraints as

you go

Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

15

Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

16

Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green

17

Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green

SA=blue SA=red SA=green

18

Backtracking and Efficiency

19

Note that backtracking search is basically DFS with
some small improvements. Can we improve on it
further?

Ordering:
• Which variables should be tried first?
• In what order should a variable’s values be tried?

Filtering:
• Can we detect failure early?

Structure:
• Can we exploit the problem structure?

Ordering: Most Constrained
Variable

• Choose the variable which has the
fewest “legal” moves

- AKA minimum remaining values (MRV)

DNT={green, blue}

DSA={green, blue}

Dothers={red, green, blue}

DSA={blue}

DQ={blue, red}

Dothers={red,green,blue}

20

Ordering: Most Constraining
Variable

• Most constraining variable:

- Choose variable with most constraints on remaining
variables

• Tie-breaker among most constrained variables

SA is involved in 5 constraints

21

Ordering: Least-Constraining
Value

• Given a variable, choose the least constraining
value:

- The one that rules out the fewest values in the
remaining variables

22

Filtering: Forward Checking

• Is there a way to detect failure early?

• Forward checking:

- Keep track of remaining legal values for
unassigned variables

- Terminate search when any variable has no
legal values

23

Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

24

Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

Forward checking removes the value Red of NT and of SA

25

Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

26

Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

27

Example: Forward Checking

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment  
 {(WA ! R), (Q ! G), (V ! B)}
does not lead to a solution

28

Filtering: Arc Consistency

29

Forward checking propagates information from
assigned to unassigned variables, but it can not
detect all future failures early

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB

NT and SA can not
both be blue!

Need to reason
about constraints

Filtering: Arc Consistency

30

Given domains D1 and D2, an arc is
consistent if for all x in D1 there is a y in D2
such that x and y are consistent.

NSWSA

DSA={blue} DNSW={blue,red}

Is the arc from SA to NSW consistent?
Is the arc from NSW to SA consistent?

Structure: Independent
Subproblems

31

Tasmania does not
interact with the rest
of the problem

Idea: Break down the graph into its
connected components. Solve each
component separately.

Significant potential savings:
• Assume n variables with domain size d: O(dn)
• Assume each component involves c variables (n/c components)

for some constant c: O(dc n/c)

Structure: Tree Structures

32

CSPs can be solved in O(nd2) if there are no loops in
the constraint graph

Topological
Sort

Step 1: For i=n to 1, make-consistent(Xi,parent(Xi))
Step 2: For i=1 to n, assign value to Xi consistent
with parent(Xi) [Note: No backtracking!]

Structure: Non-Trees?

33

If we assign SA a colour
and then remove that
colour from the domains
all other variables, then
we have a tree

Step 1: Choose a subset S of variables such that the constraint graph
becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S
1. Remove from the domains of remaining variables, all values that are

inconsistent with S
2. If the remaining CSP has a solution, return it

Structure: Cutsets

Running time:
• Let c be the size of the cutset then

• dc combinations of variables in S
• For each combination must solve a tree problem of size n-c (O(n-c)d2)
• Therefore, running time is O(dc(n-c)d2)

• Finding smallest cutset is NP-hard but efficient approximations exist

34

Structure: Non-Trees?

35

Tree decompositions

1. Each variable appears in at least one subproblem
2. If two variables are connected by a constraint, then they (and the

constraint) must appear together in at least one subproblem
3. If a variable appears in two subproblems in the tree, it must appear in

every subproblem along the path connecting those subproblems

Structure: Tree
Decompositions

• Solve each subproblem independently
• e.g {(WA=r,NT=g,SA=b),(WA=b,

NT=g,SA=r),…}

• Solve constraints connecting the
subproblems using tree-based algorithm
(to make sure that subproblems with
shared variables agree)

36

Want to make the subproblems as small as possible!
Tree width: w= Size of largest subproblem-1
Running time O(ndw+1)

Finding tree decomposition with min
tree-width is NP-hard, but good

heuristics exist

Summary

• How to formalize problems as CSPs

• Backtracking search

• Improvements using

• Ordering

• Filtering

• Structure

37

