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Outline
• What are Constraint Satisfaction 

Problems (CSPs)?

• Standard Search and CSPs

• Improvements

- Backtracking

- Backtracking + heuristics

- Forward Checking
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Introduction
Standard search

State is a “black box”: arbitrary 
data structure

Goal test: any function over 
states

Successor function: anything 
that lets you move from one 
state to another
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Constraint satisfaction 
problems (CSPs)

A special subset of search 
problems

States are defined by variables Xi 
with values from domains Di

Goal test is a set of constraints 
specifying allowable combinations 
of values for subsets of variables 



Example: Map Colouring
• Variables

• V={T, V, NSW, Q, NT, WA, SA}

• Domains

•  D={red, blue, green}

• Constraints: adjacent regions must have different 
colours

• Implicit: WA≠NT

• Explicit: (WA, NT)∈ {(red, blue), (red, green), (blue, 
red)…}

• Solution is an assignment satisfying all constraints

• {WA=red, NT=green, Q=red, NSW=green, V=red, 
SA=blue, T=green}

4



N Queens Problem

• Variables: Xi,j

• Domains:  {0,1} 

• Constraints: 
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 N Queens Problem
• Variables:  Qi

• Domains: {1,2,…,N}

• Constraints: 

• Implicit: 

• Explict:
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8i, j non-threatening(Qi, Qj)

(Q1, Q2) 2 {(1, 3), (1, 4), . . .}
. . .



3 Sat
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• Variables: V1,…, Vn

• Domains: {0,1}
• Constraints:

• K constraints of the form Vi*∨Vj*∨Vk* Vi* where Vi* 
is either Vi or ¬Vi

 

A canonical NP-complete
 problem

A¬B _ ¬C
¬A _B _D

D _B _ E

¬A _ ¬B _ C



Types of CSPs
• Discrete Variables

• Finite domains
• If domain has size d, then there are O(dn) complete 

assignments
• Boolean CSPs (including 3-SAT)

• Infinite domains (e.g. integers)
• Constraint languages
• Linear constraints are solvable but non-linear are 

undecidable

• Continuous Variables
• Linear programming (linear constraints solvable in 

polynomial time)
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Types of CSPs
• Varieties of Constraints

• Unary constraints: involve a single variable
• NSW≠red

• Binary constraints: involve a pair of variables
• NSW≠Q

• Higher-order constraints: involve more than two 
variables
• AllDiff(V1,…,Vn)

• Soft Constraints (preferences)
• red “is better than” green
• Constrained optimization problems
• (we will revisit these later in the semester)time)
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Constraint Graphs
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You can represent binary 
constraints with a 
constraint graph

Nodes are variables

Edges are constraints

T
WA

NT

SA

Q

NSW

V



CSPs and Search
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We can use standard search to solve CSPs

States: Partial assignments of values to variables
Initial State: Empty assignment, {}
Successor Function: Assign a value to an 
unassigned variable
Goal Test: The current assignment is complete 
and satisfies all constraints

T
WA

NT

SA

Q

NSW

V



CSPs and Search
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States: Partial assignments of 
values to variables
Initial State: Empty assignment, {}
Successor Function: Assign a 
value to an unassigned variable
Goal Test: The current assignment 
is complete and satisfies all 
constraints

T

WA

NT

SA

Q

NSW

V

What happens if we run 
something like BFS?



Commutativity
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Key Insight:
• CSPs are commutative

• Order of actions taken does not 
effect outcome

• Can assign variables in any order

• CSP algorithms take advantage of this
• Consider possible assignments for a 

single variable at each node in the 
search tree

{WA=red, NT=blue} 
is equivalent to 

{NT=blue, WA=red}

T
WA

NT

SA

Q

NSW

V



Backtracking Search

• Select unassigned variable X

• For each value {x1,...,xn} in domain of X

- If value satisfies constraints, assign X=xi and exit loop

• If an assignment is found

- Move to next variable

• If no assignment found

- Back up to preceding variable and try a different assignment for 
it
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Backtracking search is the basic algorithm for CSPs 
One variable at 

a time

Check 
constraints as 

you go



Backtracking Example
0

T
WA

NT

SA

Q

NSW
V
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Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red
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Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green
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Backtracking Example
0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green

SA=blue SA=red SA=green
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Backtracking and Efficiency
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Note that backtracking search is basically DFS with 
some small improvements. Can we improve on it 
further?

Ordering:
• Which variables should be tried first?
• In what order should a variable’s values be tried?

Filtering:
• Can we detect failure early?

Structure:
• Can we exploit the problem structure?



Ordering: Most Constrained 
Variable

• Choose the variable which has the 
fewest “legal” moves

- AKA minimum remaining values (MRV)

DNT={green, blue}

DSA={green, blue}

Dothers={red, green, blue}

DSA={blue}

DQ={blue, red}

Dothers={red,green,blue}
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Ordering: Most Constraining 
Variable

• Most constraining variable:

- Choose variable with most constraints on remaining 
variables

• Tie-breaker among most constrained variables

SA is involved in 5 constraints
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Ordering: Least-Constraining 
Value

• Given a variable, choose the least constraining 
value:

- The one that rules out the fewest values in the 
remaining variables
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Filtering: Forward Checking

• Is there a way to detect failure early?

• Forward checking:

- Keep track of remaining legal values for 
unassigned variables

- Terminate search when any variable has no 
legal values
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

Forward checking removes the value Red of NT and of SA
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB
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Example: Forward Checking

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment  
     {(WA ! R), (Q ! G), (V ! B)}
does not lead to a solution
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Filtering: Arc Consistency
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Forward checking propagates information from 
assigned to unassigned variables, but it can not 
detect all future failures early

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB

NT and SA can not 
both be blue! 

Need to reason 
about constraints



Filtering: Arc Consistency
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Given domains D1 and D2, an arc is 
consistent if for all x in D1 there is a y in D2 
such that x and y are consistent.

NSWSA

DSA={blue} DNSW={blue,red}

Is the arc from SA to NSW consistent?
Is the arc from NSW to SA consistent?



Structure: Independent 
Subproblems
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Tasmania does not 
interact with the rest 
of the problem

Idea: Break down the graph into its 
connected components. Solve each 
component separately.

Significant potential savings:  
• Assume n variables with domain size d: O(dn)
• Assume each component involves c variables (n/c components) 

for some constant c: O(dc n/c)



Structure: Tree Structures
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CSPs can be solved in O(nd2) if there are no loops in 
the constraint graph

Topological 
Sort

Step 1: For i=n to 1, make-consistent(Xi,parent(Xi))
Step 2: For i=1 to n, assign value to Xi consistent 
with parent(Xi)  [Note: No backtracking!]



Structure: Non-Trees?
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If we assign SA a colour 
and then remove that 
colour from the domains 
all other variables, then 
we have a tree

Step 1: Choose a subset S of variables such that the constraint graph 
becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S
1. Remove from the domains of remaining variables, all values that are 

inconsistent with S
2. If the remaining CSP has a solution, return it



Structure: Cutsets

Running time:
• Let c be the size of the cutset then

• dc combinations of variables in S
• For each combination must solve a tree problem of size n-c  (O(n-c)d2)
• Therefore, running time is O(dc(n-c)d2)

• Finding smallest cutset is NP-hard but efficient approximations exist
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Structure: Non-Trees?
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Tree decompositions

1. Each variable appears in at least one subproblem
2. If two variables are connected by a constraint, then they (and the 

constraint) must appear together in at least one subproblem
3. If a variable appears in two subproblems in the tree, it must appear in 

every subproblem along the path connecting those subproblems



Structure: Tree 
Decompositions

• Solve each subproblem independently
• e.g {(WA=r,NT=g,SA=b),(WA=b, 

NT=g,SA=r),…}

• Solve constraints connecting the 
subproblems using tree-based algorithm 
(to make sure that subproblems with 
shared variables agree)
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Want to make the subproblems as small as possible! 
Tree width: w= Size of largest subproblem-1
Running time O(ndw+1)

Finding tree decomposition with min 
tree-width is NP-hard, but good 

heuristics exist



Summary

• How to formalize problems as CSPs

• Backtracking search

• Improvements using

• Ordering

• Filtering

• Structure
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