Computational
Learning Theory

CS 486/686: Introduction to Artificial Intelligence



Overview

— Introduction to Computational Learning Theory

— PAC Learning Theory

Thanks to T Mitchell



Introduction

e Recall how inductive learning works

— Given a training set of examples of the form (X,
f(x)) return a function h (a hypothesis) that
approximates f

Decision Trees:
Boolean functions




Computational Learning Theory

e Are there general laws for inductive learning?

e Theory to relate
— Probability of successful learning
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which f is approximated

— Manner in which training examples are presented



Computational Learning Theory

e Sample complexity

— How many training examples are needed to
learn the target function, f?
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Computational Learning Theory

e Sample complexity

— How many training examples are needed to learn the
target function, f?

e Computational complexity

— How much computation effort is needed to learn the
target function, f?

e Mistake bound

— How many training examples will a learner misclassify
before learning the target function, f?



Sample Complexity

e How many examples are sufficient to learn {?
— If learner proposes instances as queries to a teacher
¢ learner proposes X, teacher provides f(x)
— If the teacher provides training examples

e teacher provides a sequence of examples of the form (x,

f(x))
— |If some random process proposes instances

e instance x generated randomly, teacher provide f(x)



Function Approximation

Boolean
H={h:X->{0,1}} X=<X1,...,X20>
|H|=2/XI=02"20 [X|=220
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Function Approximation

Boolean
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How many labelled examples are needed in order to determine which of the

hypothesis is the correct one?
All 220 instances in X must be labelled!

There is no free lunch!



Sample Complexity

o Given
— set of instances X
— set of hypothesis H
— set of possible target concepts F

— training instances generated by a fixed unknown probability distribution D over
X

e Learner observes sequence, D, of training examples (x,f(x))
— instances are drawn from distribution D
— teacher provides f(x) for each instance

e Learner must output a hypothesis h estimating f

— his evaluated by its performance on future instances drawn according to D



True Error of a Hypothesis

e The true error (errorp(h)) of hypothesis h with
respect to target function f and distribution D is the
probability that h will misclassify an instance drawn at
random according to D

— errorp(h)=Prxin p[f(x)#h(x)] etmee soce ¥

Figure from

Machine Learning by T Mitchell
Note our notation is a bit different:
We use f instead of ¢ and h disagree




Training Error vs True Error

e Training error of h wrt target function f

— How often h(x)#f(x) over training instances D
e errorp(h)=Prxin p[f(X)2h(x)]= #(f(X) £h(x))/IDI

e Note: A consistent h will have errorp(h)=0

e True error of h wrt to target function f

— How often h(x)#f(x) over future instances drawn at
random from D

e errorp(h)=Pryin p[f(x)£h(x)]



Version Spaces

e A hypothesis h is consistent with a set of training

examples D of target function f if and only if
h(x)=f(x).

Consistent(h, D) = (V(z, f(z)) € D)h(z) = f(x)

e Aversion space, VSH, is the set of all hypothesis

from H that are consistent with all training examples
in D

VS p ={h € H|Consistent(h, D)}

14



e-Exhausting VSH p

e Version space VSHp is e-exhausted wrt f and D if
every h in VS p has true error less than € wrt f
and D

(Vh € VSg plerrorp(h) < €

Hypothesis space H

-3 r: training error
4 error: true error

error=.2 e-exhausted for €>0.2




How many examples will €-
exhaust the VS?

e Theorem[Haussler, 1988]. If

— H is finite and

— D is a sequence of m=1 independent random
examples of target function f

e Then for any O=e<1, the probability that
VSH,D is not e-exhausted (wrt f) is less
than IHle-¢m

16



How many examples will €-
exhaust the VS?

e Theorem[Haussler, 1988]. If

— H is finite and

— D is a sequence of m=1 independent random
examples of target function f

e Then for any O=e<1, the probability that
VSH,D is not e-exhausted (wrt f) is less
than IHle-¢m

17



How many examples will €-
exhaust the VS?

Interesting!

This bounds the probability that any consistent
learner will output a hypothesis h with error(h)=¢

«

VSH,D is not e-exhausted (wrt f) is less
than [Hle-&m
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Proof




How to interpret this result

Pr((3h € H)st(errorp(h) = 0) A (errorp(h) > €)] < |H|e ™

e Suppose we want this probability to be at most 6

— How many training examples are needed?

I %(m H| + In(1/5))

— If errorp(h)=0 then with probability at least (1-0)

errorp(h) < %(m H| + In(1/6))
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Decision Tree Example




PAC Learning

e Probably Approximately Correct (PAC) Learner

— Given a class C of possible target concepts (f) defined
over a set of instances X os length n, and a learner L
using hypothesis space H

— C is PAC-learnable by L using H if for all fin C,
distributions D over X, O<e<1/2 and 0<d0<1/2, leaner L
will with probability at least (1-0) output a hypothesis h
such that errorp(h)<e in time polynomial in 1/g, 1/, n,
and size(f)
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Agnostic Learners

e So far we have assumed fis in H. What if
we do not make this assumption?
(Agnostic Learning)

e Goal: Hypothesis h that makes the fewest
errors on the training data!
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Agnostic Learning Derivation

e Hoeffding Bound (additive Chernoff bound):
given a coin with Pr(heads)=0, after m independent
coin flips you observe Pr(headsim)=0m

Pr@ >0, +¢) < e~ 2me

e |n our case, for any single hypothesis

Pr(errorp(h) > errorp(h) +¢€) < e 2me”
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Agnostic Learning Derivation

e To assure that the best hypothesis found by L
has an error bounded this way

Pr|(3h € H)(errorp(h) > errorp(h) + €)] < |H|e—2me2
e Sample complexity

m > ;?(ln |H| + In(1/4))
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Infinite Hypothesis Spaces

e Recall
el > %(muﬂ +1In(1/6))

— What if H ={hlh:X->Y} is infinite? What is the “right”
measure of complexity?

— The largest subset of X for which H can guarantee
zero training error (regardless of target function f)

¢ Vapnik-Chervonenkis (VC) dimension
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Shattering

o Adichotomy of a set S is a partition of S into
two disjoint subsets

— Note: Given S there are 2'S' dichotomies

e Aset of instances S is shattered by hypothesis
space H if and only if for every dichotomy of S
there exists some hypothesis in H consistent
with this dichotomy
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VC Dimension

e The VC(H) dimension of hypothesis space
H defined over input space X is the size of
the largest finite subset of X shattered by
H.

— If arbitrarily large finite subsets of X can be
shattered by H then VC(H)=0
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VC Examples

e et X=R, H=all open intervals, h:a<x<b (h(x)=1is
a<x<b, 0 otherwise)

o Let S={3.1, 4.5}, IS|=2

— dichotomies: both are 1, both are 0, one is 1 and the
other O

— H can shatter S

- VC(H) is at least 2

e What about S={x,y,z} where x<y<z?
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Sample Complexity

e How many randomly drawn examples suffice to €-exhaust VS p
with probability at least (1-0)7?

"> %(4 log, (2/6) + 8V C/(H) log,(13/e))

e Lower bound: For any O<e<1/8 and 0<6<0.01, there exists some
D and a f in C such that if L observes fewer than
1 Ve(e) -1
max | — log(1/6
- log(1/0), —o

e Then with prob. at least , L outputs a hypothesis with errorp(h)>¢
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Changing Directions:
Observations about No Free Lunch

e | mentioned “No Free Lunch” earlier in
todays lecture

e What do we really mean by “No Free
Lunch”?
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No Free Lunch Principle

e “No learning is possible without the
application of prior domain knowledge”

e For any learning algorithm, there is some
distribution that generates data such that
when trained over this distribution will
produce large error. If ISI is much smaller
than IXI then error can be close to 0.5.
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