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Overview

– Introduction to Computational Learning Theory

– PAC Learning Theory

Thanks to T Mitchell
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Introduction
• Recall how inductive learning works
– Given a training set of examples of the form (x, 

f(x)) return a function h (a hypothesis) that 
approximates f

Decision Trees:  
Boolean functions
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Computational Learning Theory

• Are there general laws for inductive learning?

• Theory to relate
– Probability of successful learning

– Number of training examples

– Complexity of hypothesis space

– Accuracy to which f is approximated

– Manner in which training examples are presented
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Computational Learning Theory

• Sample complexity
– How many training examples are needed to 

learn the target function, f?
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Computational Learning Theory

• Sample complexity
– How many training examples are needed to learn the 

target function, f?

• Computational complexity
– How much computation effort is needed to learn the 

target function, f?

• Mistake bound
– How many training examples will a learner misclassify 

before learning the target function, f?
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Sample Complexity
• How many examples are sufficient to learn f?
– If learner proposes instances as queries to a teacher

• learner proposes x, teacher provides f(x)

– If the teacher provides training examples

• teacher provides a sequence of examples of the form (x, 
f(x))

– If some random process proposes instances

• instance x generated randomly, teacher provide f(x)
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Function Approximation
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|X|=220

H={h:X->{0,1}}
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|H|=2|X|=22^20
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Function Approximation

How many labelled examples are needed in order to determine which of the 
hypothesis is the correct one? 
All 220 instances in X must be labelled! 
There is no free lunch!
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Sample Complexity
• Given

– set of instances X

– set of hypothesis H

– set of possible target concepts F

– training instances generated by a fixed unknown probability distribution D over 
X

• Learner observes sequence, D, of training examples (x,f(x))

– instances are drawn from distribution D 

– teacher provides f(x) for each instance

• Learner must output a hypothesis h estimating f

– h is evaluated by its performance on future instances drawn according to D
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True Error of a Hypothesis

• The true error (errorD(h)) of hypothesis h with 
respect to target function f and distribution D is the 
probability that h will misclassify an instance drawn at 
random according to D 

– errorD(h)=Prx in D[f(x)≠h(x)]

Figure from  
Machine Learning by T Mitchell 
Note our notation is a bit different: 
We use f instead of c
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Training Error vs True Error

• Training error of h wrt target function f
– How often h(x)≠f(x) over training instances D

• errorD(h)=Prx in D[f(x)≠h(x)]= #(f(x) ≠h(x))/|D|

• Note: A consistent h will have errorD(h)=0

• True error of h wrt to target function f
– How often h(x)≠f(x) over future instances drawn at 

random from D
• errorD(h)=Prx in D[f(x)≠h(x)]
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Version Spaces
• A hypothesis h is consistent with a set of training 

examples D of target function f if and only if 
h(x)=f(x).

• A version space, VSH,D, is the set of all hypothesis 
from H that are consistent with all training examples 
in D
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ε-Exhausting VSH,D
• Version space VSH,D is ε-exhausted wrt f and D if 

every h in VSH,D has true error less than ε wrt f 
and D

r: training error 
error: true error

ε-exhausted for ε>0.2
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How many examples will ε-
exhaust the VS?

• Theorem[Haussler, 1988]. If
– H is finite and

– D is a sequence of m≥1 independent random 
examples of target function f

• Then for any 0≤ε≤1, the probability that 
VSH,D is not ε-exhausted (wrt f) is less 
than |H|e-εm
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Interesting!  
This bounds the probability that any consistent 
learner will output a hypothesis h with error(h)≥ε
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Proof
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How to interpret this result

• Suppose we want this probability to be at most δ
– How many training examples are needed?

– If errorD(h)=0 then with probability at least (1-δ)
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Decision Tree Example
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PAC Learning
• Probably Approximately Correct (PAC) Learner
– Given a class C of possible target concepts (f) defined 

over a set of instances X os length n, and a learner L 
using hypothesis space H

– C is PAC-learnable by L using H if for all f in C, 
distributions D over X, 0<ε<1/2 and 0<δ<1/2, leaner L 
will with probability at least (1-δ) output a hypothesis h 
such that errorD(h)≤ε in time polynomial in 1/ε, 1/δ, n, 
and size(f)
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Agnostic Learners

• So far we have assumed f is in H. What if 
we do not make this assumption? 
(Agnostic Learning)

• Goal: Hypothesis h that makes the fewest 
errors on the training data!
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Agnostic Learning Derivation

• Hoeffding Bound (additive Chernoff bound): 
given a coin with Pr(heads)=θ, after m independent 
coin flips you observe Pr(heads|m)=θm

• In our case, for any single hypothesis
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Agnostic Learning Derivation

• To assure that the best hypothesis found by L 
has an error bounded this way

• Sample complexity
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Infinite Hypothesis Spaces

• Recall

– What if H ={h|h:X->Y} is infinite? What is the “right” 
measure of complexity?

– The largest subset of X for which H can guarantee 
zero training error (regardless of target function f)

• Vapnik-Chervonenkis (VC) dimension
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Shattering
• A dichotomy of a set S is a partition of S into 

two disjoint subsets
– Note: Given S there are 2|S| dichotomies

• A set of instances S is shattered by hypothesis 
space H if and only if for every dichotomy of S 
there exists some hypothesis in H consistent 
with this dichotomy
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VC Dimension

• The VC(H) dimension of hypothesis space 
H defined over input space X is the size of 
the largest finite subset of X shattered by 
H. 
– If arbitrarily large finite subsets of X can be 

shattered by H then VC(H)=∞
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VC Examples
• Let X=R, H=all open intervals, h:a<x<b (h(x)=1 is 

a<x<b, 0 otherwise)

• Let S={3.1, 4.5}, |S|=2
– dichotomies: both are 1, both are 0, one is 1 and the 

other 0

– H can shatter S 

– VC(H) is at least 2

• What about S={x,y,z} where x<y<z?
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• How many randomly drawn examples suffice to ε-exhaust VSH,D 
with probability at least (1-δ)?

• Lower bound: For any 0<ε<1/8 and 0<δ<0.01, there exists some 
D and a f in C such that if L observes fewer than

• Then with prob. at least δ, L outputs a hypothesis with errorD(h)>ε

Sample Complexity
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Changing Directions: 
Observations about No Free Lunch

• I mentioned “No Free Lunch” earlier in 
todays lecture 

• What do we really mean by “No Free 
Lunch”?
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No Free Lunch Principle

• “No learning is possible without the 
application of prior domain knowledge”

• For any learning algorithm, there is some 
distribution that generates data such that 
when trained over this distribution will 
produce large error. If |S| is much smaller 
than |X| then error can be close to 0.5.
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