Artificial Neural Networks and Support Vector Machines

CS 486/686: Introduction to Artificial Intelligence

Outline

- What is a Neural Network?
 - Perceptron learners
 - Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

Introduction

- Machine learning algorithms can be viewed as approximations of functions that describe the data
- In practice, the relationships between input and output can be extremely complex.
- We want to:
 - Design methods for learning arbitrary relationships
 - Ensure that our methods are efficient and do not overfit the data
- Today we'll discuss two modern techniques for learning arbitrary complex functions

Artificial Neural Nets

- Idea: The humans can often learn complex relationships very well.
- Maybe we can simulate human learning?

Human Brains

- A brain is a set of densely connected neurons.
- A neuron has several parts:
 - Dendrites: Receive inputs from other cells
 - Soma: Controls activity of the neuron
 - Axon: Sends output to other cells
 - Synapse: Links between neurons

Human Brains

- Neurons have two states
 - Firing, not firing
- All firings are the same

- Rate of firing communicates information (FM)
- Activation passed via chemical signals at the synapse between firing neuron's axon and receiving neuron's dendrite
- Learning causes changes in how efficiently signals transfer across specific synaptic junctions.

Artificial Brains?

- Artificial Neural Networks are based on very early models of the neuron.
- Better models exist today, but are usually used theoretical neuroscience, not machine learning

Artificial Brains?

An artificial Neuron (McCulloch and Pitts 1943)

Artificial Neural Nets

- Collection of simple artificial neurons.
- $\ensuremath{^\circ}$ Weights $W_{i,j}$ denote strength of connection from i to j

• Input function:
$$in_i = \sum_j W_{i,j} \times a_j$$

• Activation Function: $a_i = g(in_i)$

Activation Function

- Activation Function: $a_i = g(in_i)$
- Should be non-linear (otherwise, we just have a linear equation)
- Should mimic firing in real neurons
 - Active (a_i ~ 1) when the "right" neighbors fire the right amounts
 - Inactive (a_i ~ 0) when fed "wrong" inputs

Common Activation Functions

Logic Gates

 It is possible to construct a universal set of logic gates using the neurons described (McCulloch and Pitts 1943)

Logic Gates

 It is possible to construct a universal set of logic gates using the neurons described (McCulloch and Pitts 1943)

Network Structure

- Feed-forward ANN
 - Direct acyclic graph
 - No internal state: maps inputs to outputs.
- Recurrant ANN
 - Directed cyclic graph
 - Dynamical system with an internal state
 - Can remember information for future use

Example

Example

 $a_5 = g(W_{3,5} \cdot a_5 + W_{4,5} \cdot a_4)$

 $a_5 = g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Outline

• What is a Neural Network?

- Perceptron learners
- Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

Perceptrons

Single layer feed-forward network

Perceptrons

Can learn only linear separators

Training Perceptrons

- Learning means adjusting the weights
 - Goal: minimize loss of fidelity in our approximation of a function
- How do we measure loss of fidelity?
 - Often: Half the sum of squared errors of each data point

$$E = \sum_{i} 0.5(y_i - h_W(x_i))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_i 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i}^{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_{i}^{i} \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_i 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_-g(\sum_j W_j x_{i,j}))$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_i 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_-g(\sum_j W_j x_{i,j}))$$
$$\frac{\partial E}{\partial W_k} = \sum_i (y_i - h_W(\mathbf{x_i}))(-g'(\mathbf{w} \cdot \mathbf{x_i}) \frac{\partial}{\partial W_k} \mathbf{w} \cdot \mathbf{x_i})$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_i 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$
$$\frac{\partial E}{\partial W_k} = \sum_i 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_-g(\sum_j W_j x_{i,j}))$$
$$\frac{\partial E}{\partial W_k} = \sum_i (y_i - h_W(\mathbf{x_i}))(-g'(\mathbf{w} \cdot \mathbf{x_i}) \frac{\partial}{\partial W_k} \mathbf{w} \cdot \mathbf{x_i})$$
$$\frac{\partial E}{\partial W_k} = \sum_i (y_i - h_W(\mathbf{x_i}))(-g'(\mathbf{w} \cdot \mathbf{x_i}) \cdot x_{i,k})$$

Learning Algorithm

- Repeat for "some time"
- For each example i:

$$I \leftarrow \mathbf{w} \cdot \mathbf{x_i}$$

$$E \leftarrow y_i - g(I)$$

$$W_j \leftarrow W_j + \alpha (E \cdot g'(I) \cdot x_{i,j}) \forall j$$

Outline

• What is a Neural Network?

- Perceptron learners
- Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

Multilayer Networks

- Minsky's 1969 book *Perceptrons* showed perceptrons could not learn XOR.
- At the time, no one knew how to train deeper networks.
- Most ANN research abandoned.

Multilayer Networks

 Any continuous function can be learned by an ANN with just one hidden layer (if the layer is large enough).

Training Multilayer Nets

 For weights from hidden to output layer, just use Gradient Descent, as before.

$$\Delta_i = E \cdot g'(I)$$
$$W_{j,i} = W_{j,i} + \alpha \Delta_i a_j$$

 For weights from input to hidden layer, we have a problem: What is y?

$$E = \sum_{i} 0.5(y_i - h_W(x_i))^2$$

Back Propigation

- Idea: Each hidden layer caused some of the error in the output layer.
- Amount of error caused should be proportionate to the connection strength.

$$\Delta_{i} = E \cdot g'(I) \qquad \Delta_{j} = g'(I) \cdot \sum_{i} W_{j,i} \Delta_{i}$$
$$W_{j,i} = W_{j,i} + \alpha \Delta_{i} a_{j} \qquad W_{k,j} = W_{k,j} + \alpha \Delta_{j} x_{k}$$

Back Propigation

- Repeat for "some time":
- Repeat for each example:
 - Compute Deltas and weight change for output layer, and update the weights.
 - Repeat until all hidden layers updated:
 - Compute Deltas and weight change for the deepest hidden layer not yet updated, and update it.

When to use ANNs

- When we have high dimensional or realvalued inputs, and/or noisy (e.g. sensor data)
- Vector outputs needed
- Form of target function is unknown (no model)
- Not import for humans to be able to understand the mapping

Drawbacks of ANNs

- Unclear how to interpret weights, especially in many-layered networks.
- How deep should the network be? How many neurons are needed?
- Tendency to overfit in practice (very poor predictions outside of the range of values it was trained on)

Outline

- What is a Neural Network?
 - Perceptron learners
 - Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

SVMs

- We want an algorithm that can learn arbitrary functions (like multilayered ANNs)
- But, it shouldn't require picking a lot of parameters, and should extrapolate in a reasonable, predictable way.

SVMs

- Support Vector Machines (SVMs) can learn arbitrary functions.
- SVMs also extrapolate in a predictable, controllable way, and have just two parameters to set.
- Often the first choice of modern practitioners.

Maximum Margin

- Idea: We do not know where the exact decision boundary is, so pick "safest" one.
- Best separating hyperplane is furthest from any point, but still partitions cleanly

38

Support Vectors

- A maximum margin hyperplane is defined by its "Support Vectors"
- These are the points that "support" the plane on either side
- Find the optimal SVs using Quadratic Programming

Finding the SVs

• Find a weight α_j for each point. $\arg \max_{\alpha} \sum_j \alpha_j - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_j (\mathbf{x_j} \cdot \mathbf{x_k})$ *s.t.*

$$\frac{\alpha_j \ge 0 \forall j}{\sum_j \alpha_j y_j} = 0$$

- y_i = label of example i (-1 for negative, + 1 for positive)
- x_i = input vector for example i

Using the SVs

 To classify a new point, figure out whether it's above or below the plane

$$H(\mathbf{x}) = sign(\sum_{j} \alpha_{j} y_{j}(\mathbf{x} \cdot \mathbf{x_{j}}) - b)$$

 Only need to store x_j vectors for points with non-zero weight, so model can be compact.

Non-Linear Learning

- If we're just finding the best line, how can we learn arbitrary functions?
- Insight: A high-dimensional line can be projected into any shape in lower dimensions.

Non-Linear Learning

Outline

- What is a Neural Network?
 - Perceptron learners
 - Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

- Solution: Define a function F(x) that maps x to a new feature space. Learn an SVM using F(x) instead of x.
- Problems:
 - What should F(x) be?
 - If F(x) has many more dimensions than x, then the dot product will become expensive to compute.

 We call any function of the inner product of two points a "kernel".

- Examples:
 - "Linear kernel": K(x_i,x_j)= $(\mathbf{x_i} \cdot \mathbf{x_j})$
 - Polynomial Kernel: $K(\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{j}}) = (1 + \mathbf{x}_{\mathbf{j}} \cdot \mathbf{x}_{\mathbf{k}})^d$

 Mercer's Theorem: Define a matrix K over every x_i, x_j in your data, such that

$$K_{i,j} = K(x_i, x_j)$$

 If K is positive definite, then there exists some feature space F(x) such that:

$$K(\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{j}}) = F(\mathbf{x}_{\mathbf{j}}) \cdot F(\mathbf{x}_{\mathbf{k}})$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = ((x_{i,1}x_{j,1}) + (x_{i,2}x_{j,2}))^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = ((x_{i,1}x_{j,1}) + (x_{i,2}x_{j,2}))^2$$

 $K(\mathbf{x_i}, \mathbf{x_j}) = (x_{i,1}x_{j,1})^2 + (x_{i,2}x_{j,2})^2 + 2x_{i,1}x_{i,2}x_{j,1}x_{j,2}$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = ((x_{i,1}x_{j,1}) + (x_{i,2}x_{j,2}))^2$$

 $K(\mathbf{x_i}, \mathbf{x_j}) = (x_{i,1}x_{j,1})^2 + (x_{i,2}x_{j,2})^2 + 2x_{i,1}x_{i,2}x_{j,1}x_{j,2}$

 $F([x_1, x_2]) = [x_1^2, x_2^2, \sqrt{2}x_1x_2)]$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = ((x_{i,1}x_{j,1}) + (x_{i,2}x_{j,2}))^2$$

$$K(\mathbf{x_i}, \mathbf{x_j}) = (x_{i,1}x_{j,1})^2 + (x_{i,2}x_{j,2})^2 + 2x_{i,1}x_{i,2}x_{j,1}x_{j,2}$$

$$F([x_1, x_2]) = [x_1^2, x_2^2, \sqrt{2}x_1x_2)]$$

 $K(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}) = F(\mathbf{x}_{\mathbf{i}}) \cdot F(\mathbf{x}_{\mathbf{j}})$

• Insight: data points themselves are never used in optimization, only $(\mathbf{x}_i \cdot \mathbf{x}_j)$

• Mercer's Theorem means that, if we replace every $(\mathbf{x_i} \cdot \mathbf{x_j})$ by $K_{i,j} = K(x_i, x_j)$ then we are finding the optimal support vectors in some other feature space F(x)!

- Since we never need to compute F(x) explicitly, the algorithm runs equally fast whether we use a kernel or not
- Not true of other methods. If a decision tree wants to work in a larger space, it needs to split on more attributes
- This is one of the main advantages of SVMs

Some Useful Kernels

 Polynomial kernel, F() exponentially larger as d increases:

$$K(\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{j}}) = (1 + \mathbf{x}_{\mathbf{j}} \cdot \mathbf{x}_{\mathbf{k}})^d$$

• RBF kernel, F() has *infinite* dimensionality:

$$K(\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{j}}) = exp(\gamma \sum_{l} (x_{k,l} - x_{j,l})^2)$$

Picking Kernels

- More dimensions is not always better
- RBF often good for image processing and related dense domains with smooth, circular or elliptical decision boundaries
- Linear kernel (d = 1) often better for sparse domains like text
- Depends on your problem

Outline

- What is a Neural Network?
 - Perceptron learners
 - Multi-layer networks
- What is a Support Vector Machine?
 - Maximum Margin Classification
 - The kernel trick
 - Regularization

Regularization

- An SVM can usually find an exact decision boundary (if the feature space is big enough)
- But the exact boundary may over-fit the data

Regularization

• To avoid this, we add regularization parameter C

• Cost for misclassifying an example is C

• Cost for increasing total SV weight by 1 is 1/C.

Right choice of C depends on your problem

Parameter Selection

- Pick a kernel
- Pick a regularization cost C, directly manipulates overfitting vs. underfitting

When to use an SVM

- Often a good first choice for classification
- Outcome is binary, and there are not too many features or data points
- Have some notion of the proper kernel

When to avoid an SVM

- "Big Data" problems (tons of data, speed is very important, QP too slow)
- Human interpretation is important
- Problem has many outputs

Summary

You should be able to:

- Describe what a Neural Network is, and how to train one from data using backpropagation.
- Describe what maximum margin hyperplanes are and support vectors are.
- Explain how an SVM can learn non-linear functions efficiently, using the kernel trick.

Announcements

- A5 Due Today
- A6 Out Today (Fun!)
- Thursday: Computational Learning Theory
 - R&N Ch 18.5
 - P & M Ch 7.7.2

Perceptrons

- Minsky's 1969 book *Perceptrons* showed perceptrons could not learn XOR.
- Led to collapse of neural approaches to AI, and the rise of symbolic approaches during the AI winter. Note that we already knew the neural model was Turing-complete though!
- Now thought to have been a *philosophically* motivated shift, rather than one required by the science.
- Olazaran, Mikel (August 1996). "A Sociological Study of the Official History of the Perceptrons Controversy". Social Studies of Science 26: 611–659.