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Outline

e Ensemble Learning

e Statistical learning
- Bayesian learning
- Maximum a posteriori (MAP)

- Maximum likelihood



Ensemble learning

e So far our learning methods have had the
following general approach

- Choose a single hypothesis from the hypothesis
space

- Use this hypothesis to make predictions

e Maybe we can do better by using a lot of
hypothesis from the hypothesis space and
combine their predictions
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Ensemble Learning

e Analogies
- Elections

- Committees

e |ntuitions:

- Individuals may make mistakes

- The majority may be less likely to make a mistake

- Individuals have partial information

- Committes pool experise
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Ensemble expressiveness

e Using ensembles can also enlarge the
hypothesis space

- Ensemble as hypothesis

- Set of all ensembles as hypothesis space

Original hypothesis space: linear
threshold hypothesis < N,

. Simple, efficient learning algorithms "~ - - §V A

but not particularly expressive




Bagging

e Majority voting:

instance
classification

X
T Majority(h, (x).hy(x).hy (<) ().h5())

For the classification
to be wrong, at least 3
out of 5 hypothesis

Ensemble of hypothesis have to be wrong



Bagging

e Assumptions:

- Each h, makes an error with probability p

- Hypotheses are independent

e Majority voting of n hypotheses

- Probability k make an error?

- Probability majority make an error?



Weighted Majority

e |n practice
- Hypotheses are rarely independent

- Some hypotheses have less errors than
others

e Weighted majority

- Intuition

- Decrease weights of correlated hypotheses

- Increase weights of good hypotheses
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Boosting

e Boosting is the most commonly used form
of ensemble learning

e \Very simple idea, but very powerful
- Computes a weighted majority

- Operates on a weighted training set



Boosting

h,

Training set Training set

h,
Increased the weight
of the misclassified

. examples
Training set P
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AdaBoost

W< 1/N
For m=1to M do
h <- learn(data,w)
err<-0
For each (x,y,) in data do
- Ifh (x)= Yy, then err <-err + w,
For each (x,y,) in data do
- It h(x)=y; then w<-wi*err/(1-err)
w <- normalize(w)
z _<-log[(1-err)/err]
Return weighted-majority(h,z)



Boosting

e Many variations of boosting
- ADABOOQOST is a specific boosting algorithm

- Takes a weak learner L (classifies slightly better
than just random guessing)

- Returns a hypothesis that classifies training data
with 100% accuracy (for large enough M)

-
-

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
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Boosting Paradigm

e Advantages
- No need to learn a perfect hypothesis
- Can boost any weak learning algorithm
- Easy to program

- Good generalization

e When we have a bunch of hypotheses,
boosting provides a principled approach to
combine them

- Useful for sensor fusion, combining experts...
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Statistical Learning

e Statistical learning
- Bayesian learning
- Maximum a posteriori (MAP)

- Maximum likelihood



Motivation: Things you know

e Agents model uncertainty in the world and utility of
different courses of actions

e Bayes nets are models of probability distributions

e Models involve a graph structure annotated with
probabilities

e Bayes nets for realistic applications have hundreds
of nodes and tens of links...

e Where do these numbers come from?



Recall: Pathfinder
(Heckerman, 1991)

e Medical diagnosis for lymph node disease
e [arge net

- 60 diseases, 100 symptoms and test results,
14000 probabilities

e Built by medical experts
- 8 hours to determine the variables
- 35 hours for network topology

- 40 hours for probability table values
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Knowledge acquisition bottleneck

e In many applications, Bayes net structure and parameters
are set by experts in the field

-  Experts are scarce and expensive
-  Experts can be inconsistent
- Experts can be non-existent

e But data is cheap and plentiful (usually)

e Goal of learning:
- Build models of the world directly from data

- We will focus on learning models for probabilistic
models
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Candy Example e

e Favorite candy sold in two flavors
- Lime
-  Cherry
e Same wrapper for both flavors
e Sold in bags with different ratios
- 100% cherry
- 75% cherry, 25% lime
- 50% cherry, 50% lime
- 25% cherry, 75% lime
- 100% lime



Candy Example

e You bought a bag of candy but do not
know its flavor ratio

e After eating k candies
- What is the flavor ratio of the bag?

- What will be the flavor of the next candy?



Statistical Learning

e Hypothesis H: probabilistic theory about the world
- h,: 100% cherry

: 75% cherry, 25% lime
: 50% cherry, 50% lime
: 25% cherry, 75% lime
: 100% lime

e Data D: evidence about the world
- d,: 1stcandy is cherry

- d,: 2nd candy is lime

- d,: 3 candy is lime
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Bayesian learning

e Prior: P(H)
o Likelihood: P(dIH)

e Evidence: d=<d,,d,,...,d >

e Bayesian learning

-  Compute the probability of each hypothesis
given the data

-  P(HId)=a P(dIH)P(H)
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Bayesian learning

e Suppose we want to make a prediction about
some unknown guantity x

- i.e. flavor of next candy
e P(xId)=3 P(xId,h)P(hld)
= 2 P(xIn)P(h/d)

e Predictions are weighted averages of the
predictions of the individual hypothesis

22



Bayesian learning

e Hypothesis are “intermediaries”
between raw data and prediction

Data = @ > Prediction
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Candy Example

e Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>

e Assume candies are i.i.d (identically and
independently distributed)

- P(dlh)=I1, P(dlh)
e Suppose first 10 candies are all lime
- P(dlh,)=0"°=0
- P(dlh,)=0.250=0.00000095
- P(dlh,)=0.510=0.00097
- P(dlIh,)=0.75"0=0.056
- P(dihy)=110=1
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Candy Example: Posterior

Posteriors given that data is really generated from hg

o

Posterior probability of hypothesis

o
o)
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P(hy | d) ——
P(h2 | d) ——
P(hy | d) - To—
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25



Candy Example: Prediction

Prediction next candy is lime given that data is
, . really generated from h;

— T
v

O
©

o
o

o
o)

P(next candy is lime | d)
o
\l

o
6

o
N

4 6 8 10
Number of samples in d
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Bayesian learning

e Good news
- Optimal

- Given prior, no other prediction is correct more often than the
Bayesian one

- No overfitting

- Use prior to penalize complex hypothesis (complex hypothesis are
more unlikely)

e Bad news
- If hypothesis space is large, Bayesian learning is intractable
- Large summation (or integration) problem
e Use approximations
- Maximum a posteriori (MAP)

27



Maximum a posteriori (MAP)

e |dea: Make prediction on most probable
hypothesis hy,p

- Nyap=argmax; P(h.ld)

-  Pxld)=P(xlIh,,p)

e (Compare to Bayesian learning

- Bayesian learning makes prediction on all
hypothesis weighted by their probability
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MAP — Candy Example




MAP Properties

e MAP prediction is less accurate than Bayesian
prediction

- MAP relies on only one hypothesis

e MAP and Bayesian predictions converge as data
Increases

e No overfitting

- Use prior to penalize complex hypothesis
e Finding h,,,, may be intractable
-  hyap=argmax P(hld)

-  Optimization may be hard!
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MAP computation

e (Optimization
- hyap=argmax ., P(hld)
=argmax, P(h)P(dlh)
=argmax, P(h)IL P(dlIh)
e Product introduces non-linear optimization

e Take log to linearize

- hyasp=argmax, log P(h) + > log P(d/h)
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Maximum Likelihood (ML)

e |dea: Simplify MAP by assuming uniform prior
(i.e. P(h)=P(h) for all i,j)

- hy..=argmax, P(h) P(dlh)
- hy, =argmax, P(dlh)
o Make prediction on hy, only

- PxId)=P(xIhy,)
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ML Properties

M'I& Brediction IS less accurate than Bayesian and

Ignores prior information
Relies only on one hypothesis h,,

ML, MAP and Bayesian predictions converge as

data increases

Subject to overfitting

Does not penalize complex hypothesis
Finding h,, is often easier than hy,,»
hy =argmax; >, log P(dlh)
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Learning with complete data

e Parameter learning with complete data

- Parameter learning task involves finding
numerical parameters for a probability
model whose structure is fixed

- Example

- Learning CPT for a Bayes net with a given structure
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Simple ML Example

_ P(F=cherry)
e Hypothesis h, o
- P(cherry)=6 and P(lime)=1-6 -
- 0O is our parameter
e Datad:
- N candies (c cherry and I=N-c
lime)

e \What should 6 be?
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Simple ML example

e Likelihood of this particular data set
- P(dlh,)=6¢(1-6)!

- ML hypothesis is one that maximizes the above
expression

- Equivalent to maximizing log likelihood

e Log likelihood
- L(dlhy)=log P(dlh,)=c log 6 + | log (1-6)
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Simple ML example

e Find 0 that maximizes log likelihood

OL(d|hg) __ ¢ L _— 0
o0 T 0 1-0 —
- C i
O — c+Il — N

e ML hypothesis asserts that actual proportion of
cherries is equal to observed proportion
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More complex ML example

Hypothesis: h

0, 04, 05

Data:

c cherries

G, green wrappers

R_ red wrappers

| limes
G, green wrappers

R, red wrappers
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P(W=red | F)
0,
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More complex ML example

o P(dlhy 04 ,62)=6C(1 -0)16,Rc(1-6,)CcB,R1(1-6,)

e L=[clogb +llog(1-0)]+[R logb, + G_log(1-6,)]+

R/log6, + G|log(1-6,) ]

e Take derivatives with respect to each parameter and set
to zero

- 0=c/(cH)
- 0,=R/(R+G,)
- 0,=R/R+G)
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ML Comments

e This approach can be extended to any Bayes
net whose conditional probabilities are
represented as tables

e With complete data

1. ML parameter learning problem decomposes into
separate learning problems, one for each parameter!

2. Parameter values for a variable, given its parents are

just observed frequencies of variable values for each
setting of parent values!
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A problem: Zero probabillities

e \What happens if we observed zero
cherry candies?

- B wouldbesetto 0
- Is this a good prediction?

e | aplace smoothing

- Instead of 6 = c/(c+l) use 6=(c+1)/(c+l+2)
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Naive Bayes model

e Want to predict a class C based
on attributes A,

e Parameters: // \

- 0 =P(C=true)

- 8, ,=P(A=truelC=true)
- 8, ,=P(A=truelC=false)

e Assumption: A’s are
independent given C
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Naive Bayes Model

o With observed attribute values x,,x,,...,X,
- P(Clxy,X,,...,x)=a P(C)IT, P(xIC)

e From ML we know what the parameters
should be

- Observed frequencies (with possible Laplace
smoothing)

e Just need to choose the most likely class C
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Naive Bayes comments

e Naive Bayes scales well

e Naive Bayes tends to perform well

- Even though the assumption that attributes are
independent given class often does not hold

e Application

- Text classification
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Text classification

e |mportant practical problem, occurring in
many applications

- Information retrieval, spam filtering, news filtering,
building web directories...

e Simplified problem description

— Given: collection of documents, classified as
“Interesting” or “not interesting” by people

— (Goal: learn a classifier that can look at text of new
documents and provide a label, without human
intervention
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Data representation

e (Consider all possible significant words that can occur in
documents

-  Words in English dictionary, proper names, abbreviations,...

e Do notinclude stopwords
-  Words that appear in all documents

- E.g. prepositions, common verbs, “to be”, “to do”,...

o Stem words
- Map words to their root

- E.g. learn <-“learn”, “learning”, “learned”

e For each root, introduce common binary feature
-  specifying whether the word is present or not in the document
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Example

e “Machine learning is fun”
Aardvark O

M
Fun 1
Funel O
M
Learn 1
M
Machine 1
M

Zebra 0
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Use Naive Bayes Assumption

e \Words are independent of each other,
given the class, y, of document

P(y|document) = l‘llvocaml—’(wily)
How do we get the probabilities?
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Use Naive Bayes Assumption

Words are independent of each other, given the class, y, of document
Vo cab
P(y|document) = ﬂ' lP(wz;|'y)

Use ML parameter estimation!

- P(w.ly)=(# documents of class y containing word w)/(# documents of
class y)

Count words over collections of documents
Use Bayes rule to compute probabilities for unseen documents

Laplace smoothing is very useful here
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Observations

e We may not be able to find 6 analytically

» Gradient search to find good value of 6
- Start with guess 6
- Update 6 <-06 + a dL(0 ID)/0 6
- «ain(0,1) is learning rate or step size

- Repeat until 6 stops changing significantly
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Conclusions

What you should know

Bayesian learning

MAP

ML

How to learn parameters in Bayes Nets
Naive Bayes assumption

Laplace smoothing

51



