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Outline

• Ensemble Learning

• Statistical learning

- Bayesian learning

- Maximum a posteriori (MAP)

- Maximum likelihood
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Ensemble learning

• So far our learning methods have had the 
following general approach
- Choose a single hypothesis from the hypothesis 

space

- Use this hypothesis to make predictions

• Maybe we can do better by using a lot of 
hypothesis from the hypothesis space and 
combine their predictions



4

Ensemble Learning

• Analogies
- Elections 

- Committees

• Intuitions:
- Individuals may make mistakes

- The majority may be less likely to make a mistake

- Individuals have partial information
- Committes pool experise
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Ensemble expressiveness
• Using ensembles can also enlarge the 

hypothesis space

- Ensemble as hypothesis

- Set of all ensembles as hypothesis space

Original hypothesis space: linear 
threshold hypothesis

•  Simple, efficient learning algorithms 
but not particularly expressive
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Bagging

• Majority  voting:!

h2

h1

h3

h4 h5

x
Majority(h1(x),h2(x),h3(x),h4(x),h5(x))

Ensemble of hypothesis

instance
classification

For the classification 
to be wrong, at least 3 

out of 5 hypothesis 
have to be wrong
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Bagging
• Assumptions:

- Each hi makes an error with probability p

- Hypotheses are independent

• Majority voting of n hypotheses

- Probability k make an error?

- Probability majority make an error?
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Weighted Majority

• In practice

- Hypotheses are rarely independent

- Some hypotheses have less errors than 
others

• Weighted majority

- Intuition
- Decrease weights of correlated hypotheses

- Increase weights of good hypotheses
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Boosting

• Boosting is the most commonly used form 
of ensemble learning

• Very simple idea, but very powerful

- Computes a weighted majority

- Operates on a weighted training set
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Boosting

Training set

h1

Training set

Training set

Increased the weights 
of the misclassified 

examples

h2

Training set
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AdaBoost
• wj<- 1/N

• For m=1 to M do

- hm <- learn(data,w)

- err<- 0

- For each (xi,yi) in data do

- If hm(xi)≠ yi then err <-err + wi

- For each (xi,yi) in data do

- If hm(xi)=yi then wi<-wi*err/(1-err)

- w <- normalize(w)

- zm<-log[(1-err)/err]

• Return weighted-majority(h,z)
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Boosting
• Many variations of boosting

- ADABOOST is a specific boosting algorithm

- Takes a weak learner L (classifies slightly better 
than just random guessing)

- Returns a hypothesis that classifies training data 
with 100% accuracy (for large enough M)

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
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Boosting Paradigm
• Advantages
- No need to learn a perfect hypothesis

- Can boost any weak learning algorithm

- Easy to program

- Good generalization

• When we have a bunch of hypotheses, 
boosting provides a principled approach to 
combine them
- Useful for sensor fusion, combining experts…!
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Statistical Learning

• Statistical learning

- Bayesian learning

- Maximum a posteriori (MAP)

- Maximum likelihood
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Motivation: Things you know

• Agents model uncertainty in the world and utility of 
different courses of actions

• Bayes nets are models of probability distributions

• Models involve a graph structure annotated with 
probabilities

• Bayes nets for realistic applications have hundreds 
of nodes and tens of links…

• Where do these numbers come from?
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Recall: Pathfinder 
(Heckerman, 1991)

• Medical diagnosis for lymph node disease

• Large net
- 60 diseases, 100 symptoms and test results, 

14000 probabilities

• Built by medical experts
- 8 hours to determine the variables

- 35 hours for network topology

- 40 hours for probability table values
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Knowledge acquisition bottleneck

• In many applications, Bayes net structure and parameters 
are set by experts in the field

- Experts are scarce and expensive

- Experts can be inconsistent

- Experts can be non-existent

• But data is cheap and plentiful (usually)

• Goal of learning:
- Build models of the world directly from data

- We will focus on learning models for probabilistic 
models
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Candy Example (from R&N)

• Favorite candy sold in two flavors
- Lime

- Cherry

• Same wrapper for both flavors

• Sold in bags with different ratios
- 100% cherry

- 75% cherry, 25% lime

- 50% cherry, 50% lime

- 25% cherry, 75% lime

- 100% lime
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Candy Example

• You bought a bag of candy but do not 
know its flavor ratio

• After eating k candies

- What is the flavor ratio of the bag?

- What will be the flavor of the next candy?
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Statistical Learning
• Hypothesis H: probabilistic theory about the world

- h1: 100% cherry

- h2: 75% cherry, 25% lime

- h3: 50% cherry, 50% lime

- h4: 25% cherry, 75% lime

- h5: 100% lime

• Data D: evidence about the world
- d1: 1st candy is cherry

- d2: 2nd candy is lime

- d3: 3rd candy is lime

- …
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Bayesian learning
• Prior: P(H)

• Likelihood: P(d|H)

• Evidence: d=<d1,d2,…,dn>

• Bayesian learning

- Compute the probability of each hypothesis 
given the data

- P(H|d)=α P(d|H)P(H)
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Bayesian learning

• Suppose we want to make a prediction about 
some unknown quantity x

- i.e. flavor of next candy

• P(x|d)=∑i P(x|d,hi)P(hi|d)

           = ∑i P(x|hi)P(hi|d)

• Predictions are weighted averages of the 
predictions of the individual hypothesis



23

Bayesian learning

• Hypothesis are “intermediaries” 
between raw data and prediction

Data P(h1)
P(h3)

P(h2)

P(hn
Prediction
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Candy Example
• Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>

• Assume candies are i.i.d (identically and 
independently distributed)

- P(d|hi)=Πj P(dj|hi)

• Suppose first 10 candies are all lime

- P(d|h1)=010=0

- P(d|h2)=0.2510=0.00000095

- P(d|h3)=0.510=0.00097

- P(d|h4)=0.7510=0.056

- P(d|h5)=110=1
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Candy Example: Posterior
Posteriors given that data is really generated from h5
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Candy Example: Prediction
Prediction next candy is lime given that data is 

really generated from h5
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Bayesian learning
• Good news

- Optimal

- Given prior, no other prediction is correct more often than the 
Bayesian one

- No overfitting

- Use prior to penalize complex hypothesis (complex hypothesis are 
more unlikely)

• Bad news

- If hypothesis space is large, Bayesian learning is intractable

- Large summation (or integration) problem

• Use approximations
- Maximum a posteriori (MAP)
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Maximum a posteriori (MAP)

• Idea: Make prediction on most probable 
hypothesis hMAP

- hMAP=argmaxhi
 P(hi|d)

- P(x|d)=P(x|hMAP)

• Compare to Bayesian learning
- Bayesian learning makes prediction on all 

hypothesis weighted by their probability
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MAP – Candy Example
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MAP Properties
• MAP prediction is less accurate than Bayesian 

prediction 
- MAP relies on only one hypothesis

• MAP and Bayesian predictions converge as data 
increases

• No overfitting
- Use prior to penalize complex hypothesis

• Finding hMAP may be intractable

- hMAP=argmax P(h|d)

- Optimization may be hard!
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MAP computation
• Optimization

- hMAP=argmax h P(h|d)

        =argmaxh P(h)P(d|h)

         =argmaxh P(h)Πi P(di|h)

• Product introduces non-linear optimization

• Take log to linearize

- hMAP=argmaxh log P(h) + ∑i log P(di|h)
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Maximum Likelihood (ML)

• Idea: Simplify MAP by assuming uniform prior 
(i.e. P(hi)=P(hj) for all i,j)

- hMAP=argmaxh P(h) P(d|h)

- hML=argmaxh P(d|h)

• Make prediction on hML only

- P(x|d)=P(x|hML)
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ML Properties
• ML prediction is less accurate than Bayesian and 

MAP 
- Ignores prior information

- Relies only on one hypothesis hM

• ML, MAP and Bayesian predictions converge as 
data increases

• Subject to overfitting
- Does not penalize complex hypothesis 

• Finding hML is often easier than hMAP

- hML=argmaxj ∑i log P(di|hj)
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Learning with complete data

• Parameter learning with complete data

- Parameter learning task involves finding 
numerical parameters for a probability 
model whose structure is fixed

- Example
- Learning CPT for a Bayes net with a given structure
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Simple ML Example

• Hypothesis hθ
- P(cherry)=θ and    P(lime)=1-θ

-  θ is our parameter

• Data d:
- N candies (c cherry and l=N-c 

lime)

• What should θ be?
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Simple ML example
• Likelihood of this particular data set

- P(d|hθ)=θc(1-θ)l

- ML hypothesis is one that maximizes the above 
expression

- Equivalent to maximizing log likelihood

• Log likelihood

- L(d|hθ)=log P(d|hθ)=c log θ + l log (1-θ)
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Simple ML example
• Find θ that maximizes log likelihood

• ML hypothesis asserts that actual proportion of 
cherries is equal to observed proportion
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More complex ML example

• Hypothesis: hθ, θ1, θ2

• Data:

- c cherries

- Gc green wrappers

- Rc red wrappers

- l limes

- Gl green wrappers

- Rl red wrappers
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More complex ML example
• P(d|hθ , θ1,θ2

)=θc(1-θ)lθ1
Rc(1-θ1)Gcθ2

Rl(1-θ2)Gl

• L= [c logθ +l log(1-θ)]+[Rclogθ1 + Gclog(1-θ1)]+

! !       [Rllogθ2 + Gllog(1-θ2) ]

• Take derivatives with respect to each parameter and set 
to zero

-  θ=c/(c+l)

-  θ1 = Rc/(Rc+Gc)

-  θ2 = Rl/(Rl+Gl)
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ML Comments
• This approach can be extended to any Bayes 

net whose conditional probabilities are 
represented as tables

• With complete data
1. ML parameter learning problem decomposes into 

separate learning problems, one for each parameter!

2. Parameter values for a variable, given its parents are 
just observed frequencies of variable values for each 
setting of parent values!
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A problem: Zero probabilities

• What happens if we observed zero 
cherry candies?

-  θ would be set to 0

- Is this a good prediction?

• Laplace smoothing

- Instead of θ = c/(c+l) use θ=(c+1)/(c+l+2)



42

Naïve Bayes model
• Want to predict a class C based 

on attributes Ai

• Parameters:

-  θ =P(C=true)

-  θj,1=P(Aj=true|C=true)

-  θj,2=P(Aj=true|C=false)

• Assumption: Ai’s are 
independent given C

C

A1 A2 An…
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Naïve Bayes Model

• With observed attribute values x1,x2,…,xn

- P(C|x1,x2,…,xn)=α P(C)Πi P(xi|C)

• From ML we know what the parameters 
should be

- Observed frequencies (with possible Laplace 
smoothing)

• Just need to choose the most likely class C
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Naïve Bayes comments

• Naïve Bayes scales well

• Naïve Bayes tends to perform well

- Even though the assumption that attributes are 
independent given class often does not hold

• Application

- Text classification
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Text classification
• Important practical problem, occurring in 

many applications

- Information retrieval, spam filtering, news filtering, 
building web directories…

• Simplified problem description
– Given: collection of documents, classified as 

“interesting” or “not interesting” by people

– Goal: learn a classifier that can look at text of new 
documents and provide a label, without human 
intervention
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Data representation
• Consider all possible significant words that can occur in 

documents
- Words in English dictionary, proper names, abbreviations,…

• Do not include stopwords
- Words that appear in all documents

- E.g. prepositions, common verbs, “to be”, “to do”,…

• Stem words
- Map words to their root

- E.g. learn <-“learn”, “learning”, “learned”

• For each root, introduce common binary feature
- specifying whether the word is present or not in the document
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Example
• “Machine learning is fun”

Aardvark 0
  M

Fun         1
Funel      0

 M
Learn      1

 M
Machine   1

 M
Zebra      0
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Use Naïve Bayes Assumption

• Words are independent of each other, 
given the class, y,  of document

How do we get the probabilities?
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Use Naïve Bayes Assumption

• Words are independent of each other, given the class, y, of document

• Use ML parameter estimation!

- P(wi|y)=(# documents of class y containing word wi)/(# documents of 
class y)

• Count words over collections of documents

• Use Bayes rule to compute probabilities for unseen documents

• Laplace smoothing is very useful here
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Observations
• We may not be able to find θ analytically

• Gradient search to find good value of θ

- Start with guess θ

- Update θ <- θ + α ∂L(θ |D)/∂ θ

-  α in (0,1) is learning rate or step size

- Repeat until θ stops changing significantly 



51

Conclusions

• What you should know

- Bayesian learning

- MAP

- ML

- How to learn parameters in Bayes Nets

- Naïve Bayes assumption

- Laplace smoothing


