Ensemble Learning and Statistical Learning

CS 486/686
Introduction to AI
University of Waterloo
Outline

• Ensemble Learning
• Statistical learning
 - Bayesian learning
 - Maximum a posteriori (MAP)
 - Maximum likelihood
Ensemble learning

• So far our learning methods have had the following general approach
 - Choose a single hypothesis from the hypothesis space
 - Use this hypothesis to make predictions

• Maybe we can do better by using a lot of hypothesis from the hypothesis space and combine their predictions
Ensemble Learning

• Analogies
 - Elections
 - Committees

• Intuitions:
 - Individuals may make mistakes
 - The majority may be less likely to make a mistake
 - Individuals have partial information
 - Committees pool expertise
Ensemble expressiveness

- Using ensembles can also enlarge the hypothesis space
 - Ensemble as hypothesis
 - Set of all ensembles as hypothesis space

Original hypothesis space: linear threshold hypothesis

- Simple, efficient learning algorithms but not particularly expressive
Bagging

- Majority voting:

\[
\text{Majority}(h_1(x), h_2(x), h_3(x), h_4(x), h_5(x))
\]

For the classification to be wrong, at least 3 out of 5 hypothesis have to be wrong
Bagging

• Assumptions:
 - Each h_i makes an error with probability p
 - Hypotheses are independent

• Majority voting of n hypotheses
 - Probability k make an error?
 - Probability majority make an error?
Weighted Majority

- In practice
 - Hypotheses are rarely independent
 - Some hypotheses have less errors than others

- Weighted majority
 - Intuition
 - Decrease weights of correlated hypotheses
 - Increase weights of good hypotheses
Boosting

• Boosting is the most commonly used form of ensemble learning

• Very simple idea, but very powerful
 - Computes a weighted majority
 - Operates on a weighted training set
Boosting

Training set

\mathbf{h}_1

Training set

Increased the weights of the misclassified examples

\mathbf{h}_2

Training set
AdaBoost

- $w_j \leftarrow 1/N$
- For $m=1$ to M do
 - $h_m \leftarrow \text{learn}(\text{data}, w)$
 - $err \leftarrow 0$
 - For each (x_i, y_i) in data do
 - If $h_m(x_i) \neq y_i$ then $err \leftarrow err + w_i$
 - For each (x_i, y_i) in data do
 - If $h_m(x_i) = y_i$ then $w_i \leftarrow w_i \ast err/(1-err)$
 - $w \leftarrow \text{normalize}(w)$
 - $z_m \leftarrow \log[(1-err)/err]$
- Return weighted-majority(h, z)
Boosting

• Many variations of boosting
 - ADABOOST is a specific boosting algorithm
 - Takes a weak learner L (classifies slightly better than just random guessing)
 - Returns a hypothesis that classifies training data with 100% accuracy (for large enough M)

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
Boosting Paradigm

• Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Easy to program
 - Good generalization

• When we have a bunch of hypotheses, boosting provides a principled approach to combine them
 - Useful for sensor fusion, combining experts...
Statistical Learning

- Statistical learning
 - Bayesian learning
 - Maximum a posteriori (MAP)
 - Maximum likelihood
Motivation: Things you know

• Agents model uncertainty in the world and utility of different courses of actions
• Bayes nets are models of probability distributions
• Models involve a graph structure annotated with probabilities
• Bayes nets for realistic applications have hundreds of nodes and tens of links…

• Where do these numbers come from?
Recall: Pathfinder
(Heckerman, 1991)

- Medical diagnosis for lymph node disease
- Large net
 - 60 diseases, 100 symptoms and test results, 14000 probabilities
- Built by medical experts
 - 8 hours to determine the variables
 - 35 hours for network topology
 - 40 hours for probability table values
Knowledge acquisition bottleneck

- In many applications, Bayes net structure and parameters are set by experts in the field
 - Experts are scarce and expensive
 - Experts can be inconsistent
 - Experts can be non-existent
- But data is cheap and plentiful (usually)

Goal of learning:
- Build models of the world directly from data
- We will focus on learning models for probabilistic models
Candy Example (from R&N)

- Favorite candy sold in two flavors
 - Lime
 - Cherry
- Same wrapper for both flavors
- Sold in bags with different ratios
 - 100% cherry
 - 75% cherry, 25% lime
 - 50% cherry, 50% lime
 - 25% cherry, 75% lime
 - 100% lime
Candy Example

- You bought a bag of candy but do not know its flavor ratio

- After eating k candies
 - What is the flavor ratio of the bag?
 - What will be the flavor of the next candy?
Statistical Learning

- **Hypothesis H**: probabilistic theory about the world
 - h_1: 100% cherry
 - h_2: 75% cherry, 25% lime
 - h_3: 50% cherry, 50% lime
 - h_4: 25% cherry, 75% lime
 - h_5: 100% lime

- **Data D**: evidence about the world
 - d_1: 1st candy is cherry
 - d_2: 2nd candy is lime
 - d_3: 3rd candy is lime
 - ...
Bayesian learning

- Prior: \(P(H)\)
- Likelihood: \(P(d|H)\)
- Evidence: \(d = \langle d_1, d_2, \ldots, d_n \rangle\)

- Bayesian learning
 - Compute the probability of each hypothesis given the data
 - \(P(H|d) = \frac{\alpha P(d|H)P(H)}{P(d)}\)
Bayesian learning

• Suppose we want to make a prediction about some unknown quantity x

 - i.e. flavor of next candy

• $P(x|d) = \sum_i P(x|h_i)P(h_i|d)$

 $= \sum_i P(x|h_i)P(h_i|d)$

• Predictions are weighted averages of the predictions of the individual hypothesis
Bayesian learning

- Hypothesis are “intermediaries” between raw data and prediction
Candy Example

- Assume prior \(P(H) = <0.1, 0.2, 0.4, 0.2, 0.1> \)
- Assume candies are i.i.d (identically and independently distributed)
 \[P(d|h_i) = \Pi_j P(d_j|h_i) \]
- Suppose first 10 candies are all lime
 \[P(d|h_1) = 0^{10} = 0 \]
 \[P(d|h_2) = 0.25^{10} = 0.00000095 \]
 \[P(d|h_3) = 0.5^{10} = 0.00097 \]
 \[P(d|h_4) = 0.75^{10} = 0.056 \]
 \[P(d|h_5) = 1^{10} = 1 \]
Candy Example: Posterior

Posteriors given that data is really generated from h_5
Prediction next candy is lime given that data is really generated from h_5
Bayesian learning

• Good news
 - Optimal
 - Given prior, no other prediction is correct more often than the Bayesian one
 - No overfitting
 - Use prior to penalize complex hypothesis (complex hypothesis are more unlikely)

• Bad news
 - If hypothesis space is large, Bayesian learning is intractable
 - Large summation (or integration) problem

• Use approximations
 - Maximum a posteriori (MAP)
Maximum a posteriori (MAP)

- Idea: Make prediction on most probable hypothesis h_{MAP}

 - $h_{\text{MAP}} = \arg\max_{h_i} P(h_i|d)$

 - $P(x|d) = P(x|h_{\text{MAP}})$

- Compare to Bayesian learning

 - Bayesian learning makes prediction on all hypothesis weighted by their probability
MAP – Candy Example
MAP Properties

• MAP prediction is less accurate than Bayesian prediction
 - MAP relies on only one hypothesis

• MAP and Bayesian predictions converge as data increases

• No overfitting
 - Use prior to penalize complex hypothesis

• Finding h_{MAP} may be intractable
 - $h_{\text{MAP}}=\arg \max P(h|d)$
 - Optimization may be hard!
MAP computation

- Optimization
 \[h_{\text{MAP}} = \text{argmax}_h P(h|d) \]
 \[= \text{argmax}_h P(h)P(d|h) \]
 \[= \text{argmax}_h P(h)\prod_i P(d_i|h) \]

- Product introduces non-linear optimization

- Take log to linearize
 \[h_{\text{MAP}} = \text{argmax}_h \log P(h) + \sum_i \log P(d_i|h) \]
Maximum Likelihood (ML)

- Idea: Simplify MAP by assuming uniform prior (i.e. $P(h_i) = P(h_j)$ for all i,j)

 - $h_{MAP} = \arg\max_h P(h) P(d|h)$

 - $h_{ML} = \arg\max_h P(d|h)$

- Make prediction on h_{ML} only

 - $P(x|d) = P(x|h_{ML})$
ML Properties

- ML prediction is less accurate than Bayesian and MAP
 - Ignores prior information
 - Relies only on one hypothesis h_M
- ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting
 - Does not penalize complex hypothesis
- Finding h_{ML} is often easier than h_{MAP}
 - $h_{ML} = \text{argmax}_j \sum_i \log P(d_i|h_j)$
Learning with complete data

- Parameter learning with complete data
 - Parameter learning task involves finding numerical parameters for a probability model whose structure is fixed
 - Example
 - Learning CPT for a Bayes net with a given structure
Simple ML Example

- Hypothesis \(h_\theta \)
 - \(P(\text{cherry}) = \theta \) and \(P(\text{lime}) = 1 - \theta \)
 - \(\theta \) is our parameter

- Data d:
 - \(N \) candies (c cherry and l = N - c lime)

- What should \(\theta \) be?
Simple ML example

- Likelihood of this particular data set
 \[P(dlh_\theta) = \theta^c (1-\theta)^l \]
 - ML hypothesis is one that maximizes the above expression
 - Equivalent to maximizing log likelihood

- Log likelihood
 \[L(dlh_\theta) = \log P(dlh_\theta) = c \log \theta + l \log (1-\theta) \]
Simple ML example

- Find θ that maximizes log likelihood

$$\frac{\partial L(d|h_\theta)}{\partial \theta} = \frac{c}{\theta} - \frac{l}{1-\theta} = 0$$

$$\theta = \frac{c}{c+l} = \frac{c}{N}$$

- ML hypothesis asserts that actual proportion of cherries is equal to observed proportion
More complex ML example

- Hypothesis: $h_{\theta, \theta_1, \theta_2}$
- Data:
 - c cherries
 - G_c green wrappers
 - R_c red wrappers
 - l limes
 - G_l green wrappers
 - R_l red wrappers
More complex ML example

- \(P(d|h_{\theta, \theta_1, \theta_2}) = \theta c(1-\theta)^l \theta_1 R_c (1-\theta_1)^G c \theta_2 R_l (1-\theta_2)^G l \)

- \(L = [c \log \theta + l \log(1-\theta)] + [R_c \log \theta_1 + G_c \log(1-\theta_1)] + [R_l \log \theta_2 + G_l \log(1-\theta_2)] \)

- Take derivatives with respect to each parameter and set to zero
 - \(\theta = c/(c+l) \)
 - \(\theta_1 = R_c/(R_c+G_c) \)
 - \(\theta_2 = R_l/(R_l+G_l) \)
ML Comments

• This approach can be extended to any Bayes net whose conditional probabilities are represented as tables

• With complete data
 1. ML parameter learning problem decomposes into separate learning problems, one for each parameter!

 2. Parameter values for a variable, given its parents are just observed frequencies of variable values for each setting of parent values!
A problem: Zero probabilities

• What happens if we observed zero cherry candies?
 - θ would be set to 0
 - Is this a good prediction?

• Laplace smoothing
 - Instead of $\theta = \frac{c}{c+l}$ use $\theta = \frac{c+1}{c+l+2}$
Naïve Bayes model

- Want to predict a class C based on attributes A_i

- Parameters:
 - $\theta = P(C=true)$
 - $\theta_{j,1} = P(A_j=true|C=true)$
 - $\theta_{j,2} = P(A_j=true|C=false)$

- Assumption: A_i’s are independent given C
Naïve Bayes Model

- With observed attribute values x_1, x_2, \ldots, x_n

 $$P(C|x_1, x_2, \ldots, x_n) = \alpha P(C) \prod P(x_i|C)$$

- From ML we know what the parameters should be

 - Observed frequencies (with possible Laplace smoothing)

- Just need to choose the most likely class C
Naïve Bayes comments

• Naïve Bayes scales well
• Naïve Bayes tends to perform well
 - Even though the assumption that attributes are independent given class often does not hold

• Application
 - Text classification
Text classification

• Important practical problem, occurring in many applications
 – Information retrieval, spam filtering, news filtering, building web directories…

• Simplified problem description
 – **Given**: collection of documents, classified as “interesting” or “not interesting” by people
 – **Goal**: learn a classifier that can look at text of new documents and provide a label, without human intervention
Data representation

- Consider all possible significant words that can occur in documents
 - Words in English dictionary, proper names, abbreviations,…
- Do not include stopwords
 - Words that appear in all documents
 - E.g. prepositions, common verbs, “to be”, “to do”,…
- Stem words
 - Map words to their root
 - E.g. learn <-“learn”, “learning”, “learned”
- For each root, introduce common binary feature
 - specifying whether the word is present or not in the document
Example

• “Machine learning is fun”

- Aardvark 0
- Fun 1
- Funel 0
- Learn 1
- Machine 1
- Zebra 0
Use Naïve Bayes Assumption

• Words are independent of each other, given the class, y, of document

\[P(y|\text{document}) = \prod_{i=1}^{\text{|Vocab|}} P(w_i|y) \]

How do we get the probabilities?
Use Naïve Bayes Assumption

- Words are independent of each other, given the class, y, of document

$$P(y|\text{document}) = \prod_{i=1}^{\text{Vocab}} P(w_i|y)$$

- Use ML parameter estimation!

 $$P(w_i|y) = \frac{\text{# documents of class } y \text{ containing word } w_i}{\text{# documents of class } y}$$

- Count words over collections of documents

- Use Bayes rule to compute probabilities for unseen documents

- Laplace smoothing is very useful here
Observations

- We may not be able to find θ analytically

- **Gradient search** to find good value of θ
 - Start with guess θ
 - Update $\theta \leftarrow \theta + \alpha \frac{\partial L(\theta | D)}{\partial \theta}$
 - α in $(0,1)$ is learning rate or step size
 - Repeat until θ stops changing significantly
Conclusions

• What you should know
 - Bayesian learning
 - MAP
 - ML
 - How to learn parameters in Bayes Nets
 - Naïve Bayes assumption
 - Laplace smoothing