Multiagent Systems: Intro to Game Theory

CS 486/686: Introduction to Artificial Intelligence

Introduction

- So far almost everything we have looked at has been in a single-agent setting
- Today - Multiagent Decision Making!
- For participants to act optimally, they must account for how others are going to act
- We want to
- Understand the ways in which agents interact and behave
- Design systems so that agents behave the way we would like them to

Hint for the final exam: MAS is my main research area. I like MAS problems. I even enjoy marking MAS questions. The other instructor is also a MAS researcher as is one of the TAs. They also like marking MAS questions. There will be a MAS question on the final exam.

Introduction

- Multiagent systems can be
- cooperative or self-interested
- Self-interested multiagent systems can be studied from different viewpoints
- non-strategic and strategic
- We will look at strategic self-interested systems

Self-Interest

- Self-interested does not mean
- Agents want to harm others
- Agents only care about things that benefit themselves
- Self-interested means
- Agents have their own description of states of the world
- Agents take actions based on these descriptions

Tools for Studying MAS

- Game Theory
- Describes how self-interested agents should behave
- Mechanism Design
- Describes how we should design systems to encourage certain behaviours from selfinterested agents

What is Game Theory?

- The study of games!
- Bluffing in poker
- What move to make in chess
- How to play Rock-Paper-Scissors

Also auction design, strategic
deterrence, election laws, coaching decisions, routing protocols,...

What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically

What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
- Group: Must have more than 1 decision maker
- Otherwise, you have a decision problem, not a game

What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
- Interaction: What one agent does directly affects at least one other
- Strategic: Agents take into account that their actions influence the game
- Rational: Agents chose their best actions

Example

- Decision Problem
- Everyone pays their own bill
- Game
- Before the meal, everyone decides to split the bill evenly

Strategic Game

(Matrix Game, Normal Form Game)

- Set of agents $\mathrm{I}=\{1,2, .,,, \mathrm{N}\}$
- Set of actions $A_{i}=\left\{a_{i}^{1}, \ldots, a_{i}{ }^{m}\right\}$
- Outcome of a game is defined by a profile $\mathrm{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$
- Agents have preferences over outcomes
- Utility functions ui:A->R

Examples

Agent 2

One Two

	One	
Agent 1	Two	$2,-2$
$-3,3$	$-3,3$	

Zero-sum game.
$\Sigma_{\mathrm{i}=1} \mathrm{n}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}}(\mathrm{o})=0$

$I=\{1,2\}$
$A i=\{$ One, Two $\}$
An outcome is (One, Two)
$U_{1}(($ One,Two $))=-3$ and $U_{2}(($ One,Two $))=3$

Examples

Coordination Game

Chicken
T C

	$-1,-1$	10,0
	0,10	5,5

Anti-Coordination Game

Example: Prisoners’ Dilemma

	Confess	$-5,-5$
Don't Confess	$-10,0$	$-1,-1$

Playing a Game

- Recall, agents are rational
- Let p_{i} be agent i's belief about what its opponents will do
- Best response: $\mathrm{a}_{\mathrm{i}}=\operatorname{argmax} \sum_{a_{-i}} u_{i}\left(\mathrm{a}_{\mathrm{i},} \mathrm{a}_{-\mathrm{i}}\right) \mathrm{p}_{\mathrm{i}}\left(\mathrm{a}_{-\mathrm{i}}\right)$

Notation Break: $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$

Dominated Strategies

- A strategy a'i strictly dominates strategy a_{i} if

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right)>u_{i}\left(a_{i}, a_{-i}\right) \forall a_{-i}
$$

- A rational agent will never play a dominated strategy!

Example

Confess Don't Confess

Confess	-5,-5	0,-10
Don't Confess	-10,0	-1,-1

Example

Confess Don't Confess

Confess		
	$-5,-5$	$0,-10$
Don't Confess	$-10,0$	$-1,-1$

Confess Don't Confess

Confess | $-5,-5$ | $0,-10$ |
| :--- | :--- |

Example

Confess Don't Confess

	$-5,-5$	$0,-10$
Confess Don't Confess	$-10,0$	$-1,-1$

Confess
Confess Don't Confess

Confess | $-5,-5$ | 0,40 |
| :--- | :--- |

Confess $-5,-5$
Equilibrium
Outcome

Prisoner's Dilemma

Confess Don't Confess

Is this a good outcome?
Is it Pareto Optimal?

Strict Dominance Does Not Capture the Whole Picture

	A	B	C
A	0,4	4,0	5,3
	4,0	0,4	5,3
	3,5	3,5	6,6

What strict domination eliminations can we do?
What would you predict the players of this game would do?

Nash Equilibrium

- Key Insight: an agent's best-response depends on the actions of other agents
- An action profile a* is a Nash equilibrium if no agent has incentive to change given that others do not change

$$
\forall i u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}^{*}\right) \forall a_{i}^{\prime}
$$

Nash Equilibrium

- Equivalently, a* is a N.E. iff

$$
\forall i a_{i}^{*}=\arg \max _{a_{i}} u_{i}\left(a_{i}, a_{-i}^{*}\right)
$$

	B	C
A	0,4	4,0
	5,3	
	4,0	0,4
	5,3	
	3,5	3,5

(C,C) is a N.E. because

$$
\begin{aligned}
& u_{1}(C, C)=\max \left[\begin{array}{l}
u_{1}(A, C) \\
u_{1}(B, C) \\
u_{1}(C, C)
\end{array}\right] \\
& \text { AND } \\
& u_{2}(C, C)=\max \left[\begin{array}{l}
u_{2}(C, A) \\
u_{2}(C, B) \\
u_{2}(C, C)
\end{array}\right]
\end{aligned}
$$

Nash Equilibrium

- If $\left(\mathrm{a}_{1}{ }^{*}, \mathrm{a}_{2}{ }^{*}\right)$ is a N.E. then player 1 won't want to change its action given player 2 is playing $\mathrm{a}_{2}{ }^{*}$
- If $\left(\mathrm{a}_{1}{ }^{*}, \mathrm{a}_{2}{ }^{*}\right)$ is a N.E. then player 2 won't want to change its action given player 1 is playing $a_{1}{ }^{*}$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

	A	B	c
A	0,4	4,0	5,3
B	4,0	0,4	5,3
c	3,5	3,5	6,6

Another Example

2 Nash Equilibria
Coordination Game

Yet Another Example

Agent 2

	One	Two
One	$2,-2$	$-3,3$
Agent 1		
Two	$-3,3$	$4,-4$

(Mixed) Nash Equilibria

- (Mixed) Strategy: s_{i} is a probability distribution over A_{i}
- Strategy profile: $\mathrm{s}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Expected utility: $u_{i}(s)=\Sigma_{a} \Pi_{j} s\left(a_{j}\right) u_{i}(a)$
- Nash equilibrium: s^{*} is a (mixed) Nash equilibrium if

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \forall s_{i}^{\prime}
$$

Yet Another Example

	Q One		Two
	One	$2,-2$	$-3,3$
		$-3,3$	$4,-4$

How do we determine p and q ?

Yet Another Example

	G One		Two
	One	$2,-2$	$-3,3$
		$-3,3$	$4,-4$

How do we determine p and q ?

Exercise

	B	s
B	2,1	0,0
s	0,0	1,2

This game has 3 Nash
Equilibrium (2 pure strategy NE and 1 mixed strategy NE).

Mixed Nash Equilibrium

- Theorem (Nash 1950): Every game in which the action sets are finite, has a mixed strategy equilibrium.

John Nash
Nobel Prize in Economics (1994)

Finding NE

- Existence proof is non-constructive
- Finding equilibria?
- 2 player zero-sum games can be represented as a linear program (Polynomial)
- For arbitrary games, the problem is in PPAD
- Finding equilibria with certain properties is often NP-hard

Extensive Form Games

- Normal form games assume agents are playing strategies simultaneously
- What about when agents' take turns?
- Checkers, chess,...

Extensive Form Games (with perfect information)

- $\mathrm{G}=(\mathrm{I}, \mathrm{A}, \mathrm{H}, \mathrm{Z}, \alpha, \rho, \sigma, \mathrm{u})$
- I: player set
- A: action space
- H : non-terminal choice nodes
- Z: terminal nodes
- $\quad \alpha$: action function $\alpha: \mathrm{H} \rightarrow 2^{\mathrm{A}}$
- $\quad \rho$: player function $\rho: \mathrm{H} \rightarrow \mathrm{N}$
- $\quad \sigma$: successor function $\sigma: H \times A \rightarrow H \cup Z$
- $u=\left(u_{1}, \ldots, u_{n}\right)$ where u_{i} is a utility function $u_{i}: Z \rightarrow R$

Extensive Form Games (with perfect information)

- The previous definition describes a tree

A strategy specifies an action to each nonterminal history at which the agent can move

$$
\begin{aligned}
& S_{1}=\{(A, G),(A, H),(B, G),(B, H)\} \\
& S_{2}=\{(C, E),(C, F),(D, E),(D, F)\}
\end{aligned}
$$

Nash Equilibria

We can transform an extensive form game into a normal form game.

	(C, E)	(C, F)	(D, E)	(D, F)
(A, G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

Subgame Perfect Equilibria

What are the NE?

Subgame Perfect Equilibria

Subgame Perfect Equilibria
s^{*} must be a Nash equilibrium in all subgames

What are the SPE?

Existence of SPE

- Theorem (Kuhn): Every finite extensive form game has an SPE.
- Compute the SPE using backward induction
- Identify equilibria in the bottom most subtrees
- Work upwards

Example: Centipede Game

Summary

- Definition of a Normal Form Game
- Dominant strategies
- Nash Equilibria
- Extensive Form Games with Perfect Information
- Subgame Perfect Equilibria

