Reasoning Under Uncertainty Over Time

CS 486/686: Introduction to Artificial Intelligence
Outline

• Reasoning under uncertainty over time
 - Hidden Markov Models
 - Dynamic Bayes Nets
Introduction

- So far we have assumed
 - The world does not change
 - Static probability distribution
- But the world does evolve over time
 - How can we use probabilistic inference for weather predictions, stock market predictions, patient monitoring, robot localization,...
Dynamic Inference

- To reason over time we need to consider the following:
 - Allow the world to evolve
 - Set of states (all possible worlds)
 - Set of time-slices (snapshots of the world)
 - Different probability distributions over states at different time-slices
 - Dynamic encoding of how distributions change over time
Stochastic Process

- Set of states: S
- Stochastic dynamics: $P(s_t|s_{t-1},...,s_0)$
- Can be viewed as a Bayes Net with one random variable per time-slice
Stochastic Process

• Problems:
 - Infinitely many variables
 - Infinitely large CPTs

• Solutions:
 - **Stationary process**: Dynamics do not change over time
 - **Markov assumption**: Current state depends only on a finite history of past states
k-Order Markov Process

- Assumption: last k states are sufficient
- First-order Markov process
 \[P(s_t|s_{t-1}, \ldots, s_0) = P(s_t|s_{t-1}) \]

 ![First-order Markov process diagram]

- Second-order Markov process
 \[P(s_t|s_{t-1}, \ldots, s_0) = P(s_t|s_{t-1}, s_{t-2}) \]

 ![Second-order Markov process diagram]
k-Order Markov Process

- **Advantages**
 - Can specify the entire process using finitely many time slices

- **Example: Two slices sufficient for a first-order Markov process**
 - Graph:
 - Dynamics: $P(s_t|s_{t-1})$
 - Prior: $P(s_0)$
Example: Robot Localization

- Example of a first-order Markov process

Problem:
uncertainty increases over time

Thrun et al
Hidden Markov Models

- In the previous example, the robot could use sensors to reduce location uncertainty

- In general:
 - States not directly observable (uncertainty captured by a distribution)
 - Uncertain dynamics increase state uncertainty
 - Observations: made via sensors can reduce state uncertainty

- **Solution:** Hidden Markov Model
First Order Hidden Markov Model (HMM)

- Set of states: S
- Set of observations: O
- Transition model: $P(s_t|s_{t-1})$
- Observation model: $P(o_t|s_t)$
- Prior: $P(s_0)$
Example: Robot Localization

- **Hidden Markov Model**
 - S: (x,y) coordinates of the robot on the map
 - O: distances to surrounding obstacles (measured by laser range fingers or sonar)
 - P(s_t|s_{t-1}): movement of the robot with uncertainty
 - P(o_t|s_t): uncertainty in the measurements provided by the sensors

- **Localization** corresponds to the query:
 - P(s_t,o_t,...,o_1)
Inference

- There are four common tasks
 - **Monitoring**: $P(s_t | o_t, ..., o_1)$
 - **Prediction**: $P(s_{t+k} | o_t, ..., o_1)$
 - **Hindsight**: $P(s_k | o_t, ..., o_1)$
 - **Most likely explanation**: $\arg\max_{s_t, ..., s_1} P(s_t, ..., s_1 | o_t, ..., o_1)$

- What algorithms should we use?
 - First 3 can be done with variable elimination and the 4th is a variant of variable elimination
Monitoring

• We are interested in the distribution over current states given observations: $P(s_t | o_t, ..., o_1)$
 - Examples: patient monitoring, robot localization

• Forward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i | s_{i-1})$, $P(o_i | s_i)$ $1 \leq i \leq t$
 - Restrict $o_1, ..., o_t$ to observations made
 - Sum out $s_0, ..., s_{t-1}$
 - $\sum_{s_0 \ldots s_{t-1}} P(s_0) \prod_{1 \leq i \leq t} P(s_i | s_{i-1}) P(o_i | s_i)$
Prediction

- We are interested in distributions over future states given observations: $P(s_{t+k}|o_t,\ldots,o_1)$
 - Examples: weather prediction, stock market prediction

- Forward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \leq i \leq t+k$
 - Restrict o_1,\ldots,o_t to observations made
 - Sum out $s_0,\ldots,s_{t+k-1},o_{t+1},\ldots,o_{t+k}$
 - $\sum s_0 \ldots s_{t-1},o_{t+1},\ldots,o_{t+k} P(s_0) \prod_{1 \leq i \leq t+k} P(s_i|s_{i-1}) P(o_i|s_i)$
Hindsight

• Interested in the distribution over a past state given observations
 - Example: crime scene investigation

• Forward-backward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \leq i \leq t$
 - Restrict $o_1,...,o_t$ to observations made
 - Sum out $s_0,...,s_{k-1},s_{k+1},...,s_t$
 - $\sum_{s_0,...,s_{k-1},s_{k+1},...,s_t} P(s_0) \prod_{1 \leq i \leq t} P(s_i|s_{i-1}) P(o_i|s_i)$
Most Likely Explanation

• We are interested in the most likely sequence of states given the observations: \(\text{argmax}_{s_0, \ldots, s_t} P(s_0, \ldots, s_t | o_t, \ldots, o_1) \)
 - Example: speech recognition

• Viterbi algorithm: Corresponds to a variant of variable elimination
 - Factors: \(P(s_0), P(s_i | s_{i-1}), P(o_i | s_i) \) \(1 \leq i \leq t \)
 - Restrict \(o_1, \ldots, o_t \) to observations made
 - Max out \(s_0, \ldots, s_{t-1} \)
 - \(\max_{s_0 \ldots s_{t-1}} P(s_0) \prod_{1 \leq i \leq t} P(s_i | s_{i-1}) P(o_i | s_i) \)
Complexity of Temporal Inference

• Hidden Markov Models are Bayes Nets with a polytree structure

• Variable elimination is
 - Linear with respect to number of time slices
 - Linear with respect to largest CPT $P(s_t|s_{t-1})$ or $P(o_t|s_t)$
Dynamic Bayes Nets

- What if the number of states or observations are exponential?

- Dynamic Bayes Nets
 - **Idea**: Encode states and observations with several random variables
 - **Advantage**: Exploit conditional independence and save time and space
 - **Note**: HMMs are just DBNs with one state variable and one observation variable
Example: Robot Localization

• **States**: (x,y) coordinates and heading θ

• **Observations**: laser and sonar readings, la and so
DBN Complexity

• Conditional independence allows us to **represent** the transition and observation models very compactly!

• Time and space complexity of inference: conditional independence rarely helps
 - Inference tends to be exponential in the number of state variables
 - Intuition: All state variables eventually get correlated
 - No better than with HMMs
What if the process is not stationary?

- **Solution**: Add new state components until dynamics are stationary

- **Example**: Robot navigation based on \((x,y,\theta)\) is nonstationary when velocity varies
 - **Solution**: Add velocity to state description \((x,y,v,\theta)\)
 - If velocity varies, then add acceleration,...
Non-Markovian Processes

• What if the process is not Markovian?
 - **Solution**: Add new state components until the dynamics are Markovian
 - **Example**: Robot navigation based on \((x,y,\theta)\) is non-Markovian when influenced by battery level
 - **Solution**: Add battery level to state description \((x,y,\theta,b)\)
Markovian Stationary Processes

• **Problem**: Adding components to the state description to force a process to be Markovian and stationary may significantly increase computational complexity.

• **Solution**: Try to find the smallest description that is self-sufficient (i.e. Markovian and stationary).
Summary

- Stochastic Process
 - Stationary
 - Markov assumption
- Hidden Markov Process
 - Prediction
 - Monitoring
 - Hindsight
 - Most likely explanation
- Dynamic Bayes Nets
- What to do if the stationary or Markov assumptions do not hold