Bayes Nets

CS 486/686: Introduction to Artificial Intelligence

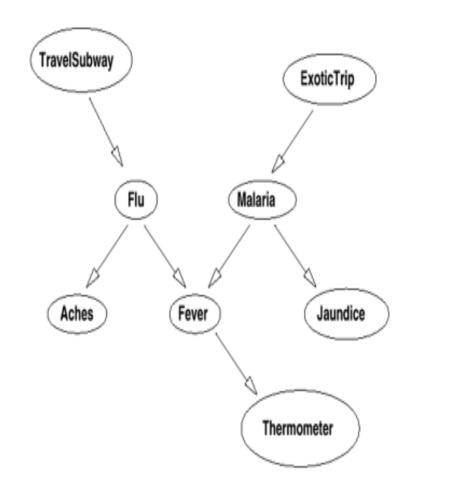
Outline

- Inference in Bayes Nets
- Variable Elimination

Inference in Bayes Nets

- Independence allows us to compute prior and posterior probabilities quite effectively
- We will start with a couple simple examples
 - Networks without loops
 - A loop is a cycle in the underlying undirected graph

Forward Inference



Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered $P(J)=\Sigma_{M,ET} P(J|M,ET)P(M,ET)$

(marginalization)

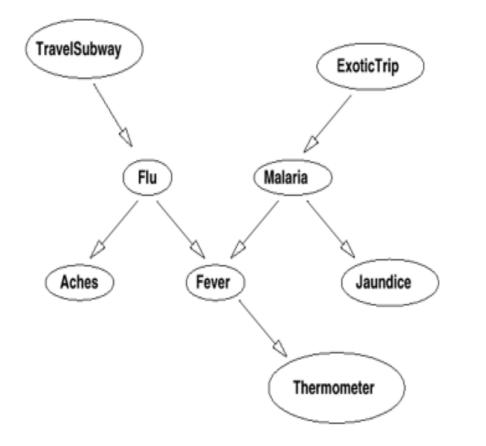
$P(J)=\Sigma_{M,ET} P(J|M)P(M|ET)P(ET)$

(chain rule and independence)

 $P(J)=\Sigma_{M}P(J|M)\Sigma_{ET}P(M|ET)P(ET)$

(distribution of sum)

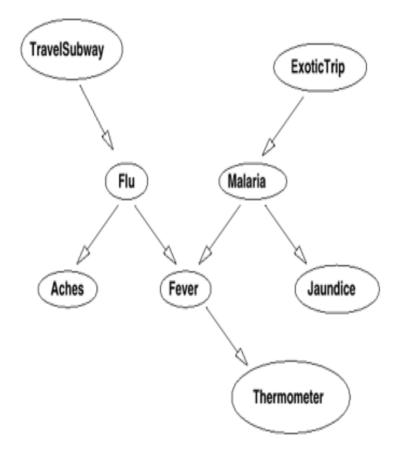
Forward Inference with "Upstream Evidence"



 $P(J|ET) = \Sigma_{M}P(J|M,ET) P(M|ET)$ $= \Sigma_{M}P(J|M) P(M|ET)$

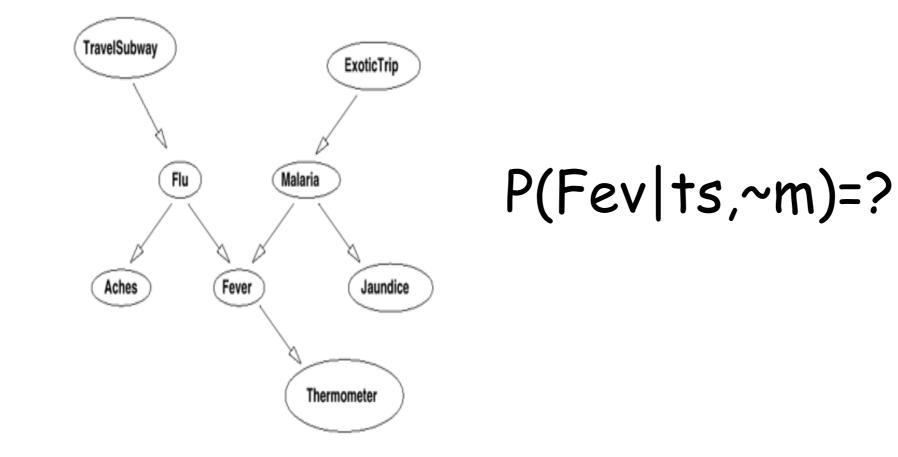
(J is cond independent of ET given M)

Forward Inference with Multiple Parents



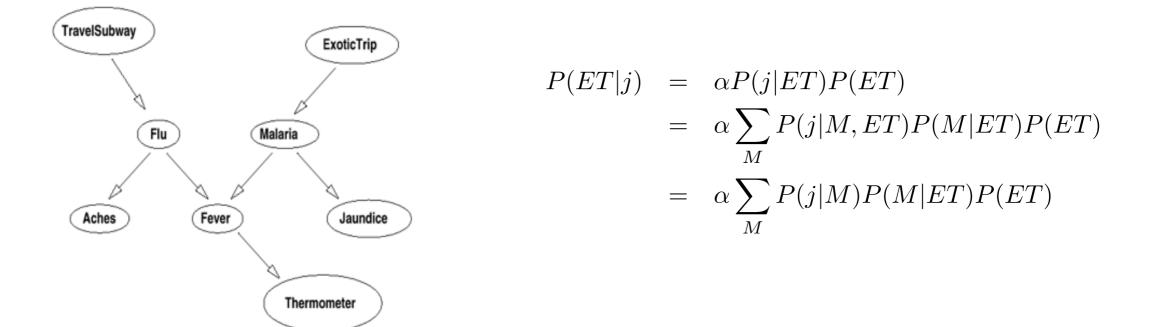
P(Fev)=?

Forward Inference with Evidence



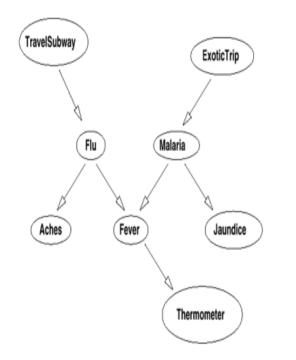
Simple Backward Inference

 When evidence is downstream of a query variable, must reason "backwards". This requires Bayes Rule



Backward Inference

 Same idea applies when several pieces of evidence lie "downstream"



Variable Elimination

- Intuitions in previous examples give us a simple inference algorithm for networks without loops:
 - Polytree algorithm

• What about general BN?

Variable Elimination

- Simply applies the summing-out rule (marginalization) repeatedly
- Exploits independence in network and distributes the sum inward
 - Basically doing dynamic programming

Factors

- A function $f(X_1,...,X_k)$ is called a factor
 - View this as a table of numbers, one for each instantiation of the variables
 - Exponential in k
- Each CPT in a BN is a factor
 - P(CIA,B) is a function of 3 variables, A, B, C
 - Represented as f(A,B,C)
- Notation: f(X,Y) denotes a factor over variables $X \cup Y$
 - X and Y are sets of variables

Product of Two Factors

- Let f(X,Y) and g(Y,Z) be two factors with variables Y in common
- The product of f and g, denoted by h=fg is
 - $h(X,Y,Z)=f(X,Y) \times g(Y,Z)$

f(A,B)		g(B,C)		h(A,B,C)				
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27	
a~b	0.1	b~c	0.3	a~bc	0.08	a~b~c	0.02	
~ab	0.4	~bc	0.8	~abc	0.28	~ab~c	0.12	
~a~b	0.6	~b~c	0.2	~a~bc	0.48	~a~b~c	0.12	

Summing a Variable Out of a Factor

- Let f(X,Y) be a factor with variable X and variable set Y
- We sum out variable X from f to produce h=∑_Xf where h(Y)=∑_{x∈Dom(X)} f(x,Y)

f(A,	.B)	h(B)			
ab	0.9	b	1.3		
a~b	0.1	~b	0.7		
~ab	0.4				
~a~b	0.6				

Restricting a Factor

- Let f(X, Y) be a factor with variable X
- We restrict factor f to X=x by setting X to the value x and "deleting". Define h=f_{X=x} as: h(Y)=f(x,Y)

f(A	,B)	$h(B) = f_{A=a}$			
ab	0.9	b	0.9		
a~b	0.1	~b	0.1		
~ab	0.4				
~a~b	0.6				

Variable Elimination: No Evidence

 Computing prior probability of query variable X can be seen as applying these operations on factors

$$A \xrightarrow{B} f_{2}(A,B) \xrightarrow{C} f_{3}(B,C)$$

•
$$P(C) = \Sigma_{A,B} P(CIB) P(BIA) P(A)$$

 $= \Sigma_B P(CIB) \Sigma_A P(BIA) P(A)$
 $= \Sigma_B f_3(B,C) \Sigma_A f_2(A,B) f_1(A)$
 $= \Sigma_B f_3(B,C) f_4(B)$
 $= f_5(C)$

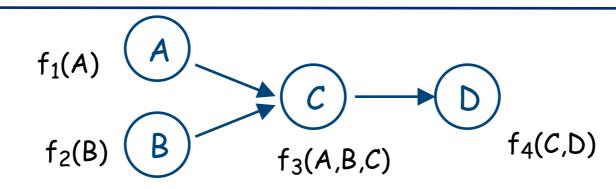
Define new factors: $f_4(B) = \Sigma_A f_2(A,B) f_1(A)$ and $f_5(C) = \Sigma_B f_3(B,C) f_4(B)$

Variable Elimination: No Evidence

$$(A) \xrightarrow{B} \xrightarrow{C} f_{1}(A) \xrightarrow{B} \xrightarrow{C} f_{3}(B,C)$$

f ₁ (A)		f ₂ (A,B)		f ₃ (B,C)		f ₄ (B)		f ₅ (C)	
а	0.9	ab	0.9	bc	0.7	b	0.85	С	0.625
~a	0.1	a~b	0.1	b~c	0.3	~b	0.15	~C	0.375
		~ab	0.4	~bc	0.2				
		~a~b	0.6	~b~c	0.8				

Variable Elimination: No Evidence



 $P(D) = \Sigma_{A,B,C} P(D|C) P(C|B,A) P(B) P(A)$

- = $\Sigma_{C} P(DIC) \Sigma_{B} P(B) \Sigma_{A} P(CIB,A) P(A)$
- $= \Sigma_C f_4(C,D) \Sigma_B f_2(B) \Sigma_A f_3(A,B,C) f_1(A)$
- $= \Sigma_C f_4(C,D) \Sigma_B f_2(B) f_5(B,C)$
- $= \Sigma_{\rm C} f_4({\rm C},{\rm D}) f_6({\rm C})$
- $= f_7(D)$

Define new factors: $f_5(B,C)$, $f_6(C)$, $f_7(D)$, in the obvious way

Variable Elimination: One View

- Write out desired computation using chain rule, exploiting independence relations in networks
- Arrange terms in convenient fashion
- Distribution each sum (over each variable) in as far as it will go
- Apply operations "inside out", repeatedly elimination and creating new factors
 - Note that each step eliminates a variable

The Algorithm

 Given query variable Q, remaining variables Z. Let F be the set of factors corresponding to CPTs for {Q}∪Z.

 Choose an elimination ordering Z₁, ..., Z_n of variables in Z.
 For each Z_j -- in the order given -- eliminate Z_j ∈ Z as follows:

 (a) Compute new factor g_j = Σ_{Zj} f₁ x f₂ x ... x f_k, where the f_i are the factors in F that include Z_j
 (b) Remove the factors f_i (that mention Z_j) from F and add new factor g_j to F

 The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

Example Again

Factors: f₁(A) f₂(B) f₃(A,B,C) f₄(C,D)
Query: P(D)?
Elim. Order: A, B, C

$$f_{1}(A) \xrightarrow{A} \qquad \qquad f_{2}(B) \xrightarrow{B} \qquad f_{3}(A,B,C) \qquad f_{4}(C,D)$$

Step 1: Add $f_5(B,C) = \Sigma_A f_3(A,B,C) f_1(A)$ Remove: $f_1(A)$, $f_3(A,B,C)$ Step 2: Add $f_6(C) = \Sigma_B f_2(B) f_5(B,C)$ Remove: $f_2(B)$, $f_5(B,C)$ Step 3: Add $f_7(D) = \Sigma_C f_4(C,D) f_6(C)$ Remove: $f_4(C,D)$, $f_6(C)$ Last factor $f_7(D)$ is (possibly unnormalized) probability P(D)

Variable Elimination: Evidence

 Computing posterior of query variable given evidence is similar; suppose we observe C=c:

$$A \xrightarrow{f_1(A)} B \xrightarrow{c} f_2(A,B) \xrightarrow{f_3(B,C)} F_3(B,C)$$

$$P(Alc) = \alpha P(A) P(clA)$$

$$= \alpha P(A) \sum_B P(clB) P(BlA)$$

$$= \alpha f_1(A) \sum_B f_3(B,c) f_2(A,B)$$

$$= \alpha f_1(A) \sum_B f_4(B) f_2(A,B)$$

$$= \alpha f_1(A) f_5(A)$$

$$= \alpha f_6(A)$$

New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \sum_B f_2(A,B) f_4(B)$;

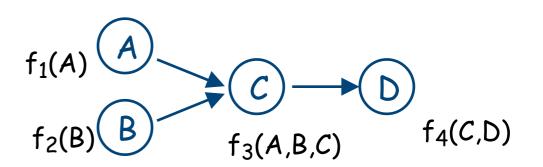
 $f_6(A) = f_1(A) f_5(A)$

The Algorithm (with Evidence)

- Given query variable Q, evidence variables E (observed to be e), remaining variables Z. Let F be the set of factors corresponding to CPTs for {Q}UZ.
 - 1. Replace each factor $f \in F$ that mentions a variable(s) in E with its restriction $f_{E=e}$ (somewhat abusing notation)
 - 2. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**.
 - 3. Run variable elimination as above.
 - 4. The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

Example

Factors: f₁(A) f₂(B)
f₃(A,B,C) f₄(C,D)
Query: P(A)?
Evidence: D = d
Elim. Order: C, B



Some Notes on VE

- After each iteration j (elimination of Z_j) factors remaining in set F refer only to variables Z_{j+1},...,Z_n and Q
 - No factor mentions an evidence variable after the initial restriction
- Number of iterations is linear in number of variables

Some Notes on VE

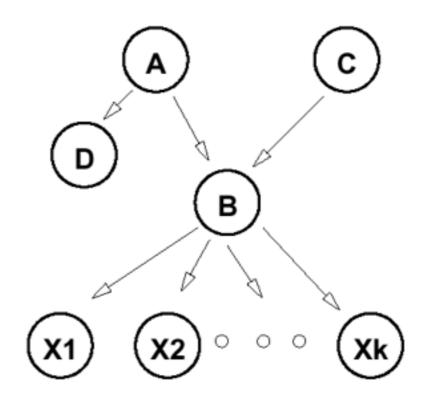
- Complexity is linear in number of variables and exponential in size of the largest factor
 - Recall each factor has exponential size in its number of variables
 - Can't do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger

Some Notes on VE

- Size of resulting factors is determined by elimination ordering
 - For polytrees, easy to find a good ordering
 - For general BN, sometimes good orderings exist and sometimes they don't
 - in which case inference is exponential in number of variables
 - Finding the optimal elimination ordering is NP-hard

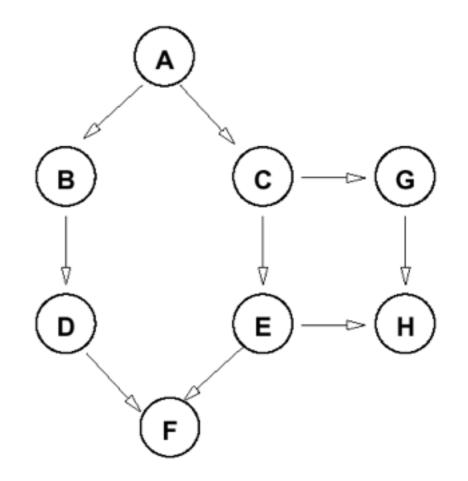
Elimination Ordering: Polytrees

- Inference is linear in size of the network
 - Ordering: eliminate only "singly-connected" nodes
 - Result: no factor ever larger than original CPTs
 - What happens if we eliminate B first?



Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
 - A,F,H,G,B,C,E: Good
 - E,C,A,B,G,H,F: Bad



Relevance

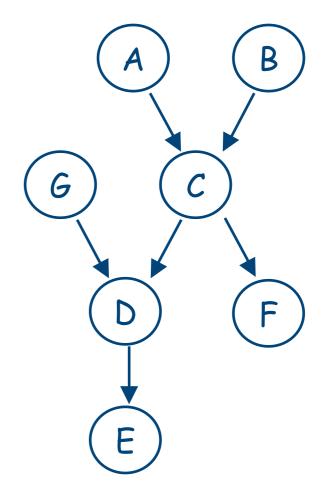
- Certain variables have no impact on the query
 - In ABC network, computing P(A) with no evidence requires elimination of B and C
 - But when you sum out these variables, you compute a trivial factor
 - Eliminating C: $g(C) = \sum_{c} f(B,C) = \sum_{c} Pr(C|B)$.
 - Note that P(clb)+P(~clb)=1 and P(cl~b)+P(~cl~b)=1

Relevance: A Sound Approximation

- Can restrict our attention to relevant variables
- Given query Q, evidence E
 - Q is relevant
 - If any node Z is relevant, its parents are relevant
 - If E∈E is a descendant of a relevant node, then
 E is relevant

• P(F)

- P(FIE)
- P(FIE,C)



Example

Probabilistic Inference

- Applications of BN in AI are virtually limitless
- Examples
 - mobile robot navigation
 - speech recognition
 - medical diagnosis, patient monitoring
 - fault diagnosis (e.g. car repairs)
 - etc

Where do BNs Come From?

- Often handcrafted
 - Interact with a domain expert to
 - Identify dependencies among variables (causal structure)
 - Quantify local distributions (CPTs)
- Empirical data, human expertise often used as a guide

Where do BNs Come From?

- Recent emphasis on learning BN from data
 - Input: a set of cases (instantiations of variables)
 - Output: network reflecting empirical distribution
 - Issues: identifying causal structure, missing data, discovery of hidden (unobserved) variables, incorporating prior knowledge (bias) about structure