
Bayes Nets

CS 486/686: Introduction to Artificial Intelligence
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Outline

• Inference in Bayes Nets

• Variable Elimination
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Inference in Bayes Nets

• Independence allows us to compute 
prior and posterior probabilities quite 
effectively

• We will start with a couple simple 
examples

- Networks without loops
- A loop is a cycle in the underlying undirected graph
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Forward Inference

P(J)=ΣM,ET P(J|M,ET)P(M,ET)

(marginalization)

P(J)=ΣM,ET P(J|M)P(M|ET)P(ET)

(chain rule and independence)

P(J)=ΣMP(J|M)ΣETP(M|ET)P(ET)

(distribution of sum)

Note: all (final) terms are CPTs in the BN 
Note: only ancestors of J considered
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Forward Inference with 
“Upstream Evidence”

P(J|ET) = ΣMP(J|M,ET) P(M|ET) 
              = ΣM P(J|M) P(M|ET)

(J is cond independent of       
ET given M)
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Forward Inference with Multiple 
Parents

P(Fev)=?
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Forward Inference with 
Evidence

P(Fev|ts,~m)=?
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Simple Backward Inference

• When evidence is downstream of a query 
variable, must reason “backwards”. This 
requires Bayes Rule

P (ET |j) = �P (j|ET )P (ET )

= �
�

M

P (j|M,ET )P (M |ET )P (ET )

= �
�

M

P (j|M)P (M |ET )P (ET )
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Backward Inference

• Same idea applies when several pieces 
of evidence lie “downstream”
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P(ET|j,fev)=?



Variable Elimination

• Intuitions in previous examples give us 
a simple inference algorithm for 
networks without loops:

- Polytree algorithm

• What about general BN?
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Variable Elimination

• Simply applies the summing-out rule 
(marginalization) repeatedly

• Exploits independence in network and 
distributes the sum inward

- Basically doing dynamic programming
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Factors
• A function f(X1,...,Xk) is called a factor

- View this as a table of numbers, one for each instantiation 
of the variables

- Exponential in k

• Each CPT in a BN is a factor

- P(C|A,B) is a function of 3 variables, A, B, C
- Represented as f(A,B,C)

• Notation: f(X,Y) denotes a factor over variables X∪Y

- X and Y are sets of variables
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Product of Two Factors

• Let f(X,Y) and g(Y,Z) be two factors with variables Y in 
common

• The product of f and g, denoted by h=fg is 

- h(X,Y,Z)=f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02

~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12
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Summing a Variable Out of a 
Factor

• Let f(X,Y) be a factor with variable X and variable 
set Y

• We sum out variable X from f to produce h=∑Xf 
where h(Y)=∑x∈Dom(X) f(x,Y)

f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6
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Restricting a Factor
• Let f(X,Y) be a factor with variable X

• We restrict factor f to X=x by setting X to the value 
x and “deleting”. Define h=fX=x as: h(Y)=f(x,Y)

f(A,B) h(B) = fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6
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Variable Elimination: No 
Evidence

• Computing prior probability of query variable  X  can 
be seen as applying these operations on factors

• P(C) = ΣA,B P(C|B) P(B|A) P(A)
            = ΣB P(C|B) ΣA P(B|A) P(A)
            = ΣB f3(B,C) ΣA f2(A,B) f1(A) 
            = ΣB f3(B,C) f4(B)
            = f5(C)
Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB 

f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination: No 
Evidence

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8
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Variable Elimination: No 
Evidence

P(D) = ΣA,B,C  P(D|C) P(C|B,A) P(B) P(A)

         = ΣC  P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)

         = ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 

         = ΣC f4(C,D) ΣB f2(B) f5(B,C)

         = ΣC f4(C,D) f6(C)

         =  f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Variable Elimination: One View

• Write out desired computation using chain rule, 
exploiting independence relations in networks

• Arrange terms in convenient fashion

• Distribution each sum (over each variable) in 
as far as it will go

• Apply operations “inside out”, repeatedly 
elimination and creating new factors

- Note that each step eliminates a variable
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The Algorithm

• Given query variable Q, remaining variables Z. Let F 
be the set of factors corresponding to CPTs for {Q}∪Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj   -- in the order given --  eliminate Zj ∊ Z 
    as follows:

(a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  
                  where the fi are the factors in F that include Zj   

(b) Remove the factors  fi   (that mention Zj ) from F 
                 and add new factor  gj   to  F
3. The remaining factors refer only to the query variable Q. 
   Take their product and normalize to produce P(Q)
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Example Again
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C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

Factors: f1(A) f2(B) f3(A,B,C) 
f4(C,D)  

Query: P(D)?   
Elim. Order: A, B, C

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A)  

             Remove: f1(A), f3(A,B,C)  

Step 2: Add f6(C)= ΣB f2(B) f5(B,C) 

             Remove: f2(B) , f5(B,C)  

Step 3: Add f7(D) = ΣC f4(C,D) f6(C)  

              Remove: f4(C,D), f6(C)  

Last factor f7(D) is (possibly unnormalized) probability P(D)



Variable Elimination: Evidence
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• Computing posterior of query variable given evidence is 
similar; suppose we observe C=c:

   P(A|c) = α P(A) P(c|A)
            = α P(A) ΣB P(c|B) P(B|A)
            = α f1(A) ΣB f3(B,c) f2(A,B) 
            = α f1(A) ΣB f4(B) f2(A,B)
            = α f1(A) f5(A)
            = α f6(A)
New factors:  f4(B)= f3(B,c);   f5(A)= ΣB f2(A,B) f4(B);  
              f6(A)= f1(A) f5(A) 

B CA
f1(A) f2(A,B) f3(B,C)



The Algorithm (with Evidence)

• Given query variable Q, evidence variables E (observed 
to be e), remaining variables Z. Let F be the set of 
factors corresponding to CPTs for {Q}∪Z.
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1. Replace each factor f∊F that mentions a variable(s) in E 
    with its restriction fE=e (somewhat abusing notation)  
2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q. 
   Take their product and normalize to produce P(Q)



Example
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C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D)  

Query: P(A)?   
Evidence: D = d 
Elim. Order: C, B



Some Notes on VE

• After each iteration j (elimination of Zj) 
factors remaining in set F refer only to 
variables Zj+1,...,Zn and Q

- No factor mentions an evidence variable 
after the initial restriction

• Number of iterations is linear in number 
of variables
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Some Notes on VE

• Complexity is linear in number of variables 
and exponential in size of the largest factor

- Recall each factor has exponential size in its 
number of variables

- Can’t do any better than size of BN (since its 
original factors are part of the factor set)

- When we create new factors, we might make a 
set of variables larger
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Some Notes on VE

• Size of resulting factors is determined 
by elimination ordering

- For polytrees, easy to find a good ordering

- For general BN, sometimes good orderings 
exist and sometimes they don’t
- in which case inference is exponential in number of variables

- Finding the optimal elimination ordering is 
NP-hard

27



Elimination Ordering: Polytrees

• Inference is linear in 
size of the network

- Ordering: eliminate only 
“singly-connected” nodes

- Result: no factor ever 
larger than original CPTs

- What happens if we 
eliminate B first?
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Effect of Different Orderings

• Suppose query 
variable is D. Consider 
different orderings for 
this network

• A,F,H,G,B,C,E: Good

• E,C,A,B,G,H,F: Bad
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Relevance

• Certain variables have no impact on the 
query

- In ABC network, computing P(A) with no 
evidence requires elimination of B and C
- But when you sum out these variables, you compute a trivial 

factor

- Eliminating C: g(C)=∑Cf(B,C)=∑CPr(C|B). 

- Note that P(c|b)+P(~c|b)=1 and P(c|~b)+P(~c|~b)=1
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Relevance: A Sound 
Approximation

• Can restrict our attention to relevant 
variables

• Given query Q, evidence E

- Q is relevant

- If any node Z is relevant, its parents are 
relevant

- If E∈E is a descendant of a relevant node, then 
E is relevant
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Example

• P(F)

• P(F|E)

• P(F|E,C)
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Probabilistic Inference

• Applications of BN in AI are virtually limitless

• Examples

- mobile robot navigation

- speech recognition

- medical diagnosis, patient monitoring

- fault diagnosis (e.g. car repairs)

- etc
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Where do BNs Come From?

• Often handcrafted

- Interact with a domain expert to 
- Identify dependencies among variables (causal structure)

- Quantify local distributions (CPTs)

• Empirical data, human expertise often 
used as a guide

34



Where do BNs Come From?

• Recent emphasis on learning BN from data

- Input: a set of cases (instantiations of variables)

- Output: network reflecting empirical distribution

- Issues: identifying causal structure, missing 
data, discovery of hidden (unobserved) 
variables, incorporating prior knowledge (bias) 
about structure
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