Bayes Nets

CS 486/686: Introduction to Artificial Intelligence
Outline

• Inference in Bayes Nets
• Variable Elimination
Inference in Bayes Nets

• Independence allows us to compute prior and posterior probabilities quite effectively

• We will start with a couple simple examples
 - Networks without loops
 - A loop is a cycle in the underlying undirected graph
Forward Inference

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

\[P(J) = \sum_{M,ET} P(J|M,ET)P(M,ET) \]
(marginalization)

\[P(J) = \sum_{M,ET} P(J|M)P(M|ET)P(ET) \]
(chain rule and independence)

\[P(J) = \sum_{M} P(J|M)\sum_{ET} P(M|ET)P(ET) \]
(distribution of sum)
Forward Inference with “Upstream Evidence”

\[
P(J|ET) = \sum_M P(J|M,ET) P(M|ET)
= \sum_M P(J|M) P(M|ET)
\]

(J is conditionally independent of ET given M)
Forward Inference with Multiple Parents

\[P(\text{Fev}) = ? \]
Forward Inference with Evidence

\[P(\text{Fev}|\text{ts, } \sim m) = ? \]
Simple Backward Inference

- When evidence is downstream of a query variable, must reason “backwards”. This requires Bayes Rule

\[
P(ET|j) = \alpha P(j|ET)P(ET) \\
= \alpha \sum_{M} P(j|M, ET)P(M|ET)P(ET) \\
= \alpha \sum_{M} P(j|M)P(M|ET)P(ET)
\]
Backward Inference

• Same idea applies when several pieces of evidence lie “downstream”

\[P(ET|j,fev) = ? \]
Variable Elimination

- Intuitions in previous examples give us a simple inference algorithm for networks without loops:
 - Polytree algorithm

- What about general BN?
Variable Elimination

• Simply applies the summing-out rule (marginalization) repeatedly
• Exploits independence in network and distributes the sum inward
 - Basically doing dynamic programming
Factors

- A function $f(X_1,\ldots,X_k)$ is called a factor
 - View this as a table of numbers, one for each instantiation of the variables
 - Exponential in k

- Each CPT in a BN is a factor
 - $P(C|A,B)$ is a function of 3 variables, A, B, C
 - Represented as $f(A,B,C)$

- Notation: $f(X,Y)$ denotes a factor over variables $X \cup Y$
 - X and Y are sets of variables
Product of Two Factors

- Let $f(X,Y)$ and $g(Y,Z)$ be two factors with variables Y in common
- The product of f and g, denoted by $h=fg$ is
 - $h(X,Y,Z)=f(X,Y) \times g(Y,Z)$

<table>
<thead>
<tr>
<th></th>
<th>f(A,B)</th>
<th>g(B,C)</th>
<th>h(A,B,C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>0.9</td>
<td>bc</td>
<td>0.7</td>
</tr>
<tr>
<td>a~b</td>
<td>0.1</td>
<td>b~c</td>
<td>0.3</td>
</tr>
<tr>
<td>~ab</td>
<td>0.4</td>
<td>~bc</td>
<td>0.8</td>
</tr>
<tr>
<td>ab</td>
<td>0.6</td>
<td>bc</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Summing a Variable Out of a Factor

• Let \(f(X, Y) \) be a factor with variable \(X \) and variable set \(Y \)

• We sum out variable \(X \) from \(f \) to produce \(h = \sum_x f \) where \(h(Y) = \sum_{x \in \text{Dom}(X)} f(x, Y) \)

<table>
<thead>
<tr>
<th>f(A,B)</th>
<th>h(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>0.9</td>
</tr>
<tr>
<td>a\sim b</td>
<td>0.1</td>
</tr>
<tr>
<td>\sim ab</td>
<td>0.4</td>
</tr>
<tr>
<td>\sim a\sim b</td>
<td>0.6</td>
</tr>
<tr>
<td>b</td>
<td>1.3</td>
</tr>
<tr>
<td>\sim b</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Restricting a Factor

• Let $f(X, Y)$ be a factor with variable X

• We restrict factor f to $X=x$ by setting X to the value x and “deleting”. Define $h=f_{X=x}$ as: $h(Y)=f(x,Y)$

<table>
<thead>
<tr>
<th>f(A,B)</th>
<th>h(B) = f_{A=a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>b 0.9</td>
</tr>
<tr>
<td>a~b</td>
<td>~b 0.1</td>
</tr>
<tr>
<td>~ab</td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td></td>
</tr>
</tbody>
</table>

ab 0.9
b 0.9
a~b 0.1
~b 0.1
~ab 0.4
~a~b 0.6
Variable Elimination: No Evidence

• Computing prior probability of query variable X can be seen as applying these operations on factors

\[
P(C) = \sum_{A, B} P(C|B) P(B|A) P(A)
\]
\[
= \sum_{B} P(C|B) \sum_{A} P(B|A) P(A)
\]
\[
= \sum_{B} f_3(B,C) \sum_{A} f_2(A,B) f_1(A)
\]
\[
= \sum_{B} f_3(B,C) f_4(B)
\]
\[
= f_5(C)
\]

Define new factors: $f_4(B) = \sum_{A} f_2(A,B) f_1(A)$ and $f_5(C) = \sum_{B} f_3(B,C) f_4(B)$
Variable Elimination: No Evidence

![Diagram showing nodes A, B, and C with arrows and functions]

<table>
<thead>
<tr>
<th>f1(A)</th>
<th>f2(A,B)</th>
<th>f3(B,C)</th>
<th>f4(B)</th>
<th>f5(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.9</td>
<td>ab</td>
<td>bc</td>
<td>0.7</td>
</tr>
<tr>
<td>~a</td>
<td>0.1</td>
<td>a~b</td>
<td>b~c</td>
<td>0.3</td>
</tr>
<tr>
<td>~ab</td>
<td>0.4</td>
<td>~bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>0.6</td>
<td>bc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values provided for each node and its relationships.
Variable Elimination: No Evidence

P(D) = Σ_{A,B,C} P(D|C) P(C|B,A) P(B) P(A)

= Σ_C P(D|C) Σ_B P(B) Σ_A P(C|B,A) P(A)

= Σ_C f_4(C,D) Σ_B f_2(B) Σ_A f_3(A,B,C) f_1(A)

= Σ_C f_4(C,D) Σ_B f_2(B) f_5(B,C)

= Σ_C f_4(C,D) f_6(C)

= f_7(D)

Define new factors: f_5(B,C), f_6(C), f_7(D), in the obvious way
Variable Elimination: One View

• Write out desired computation using chain rule, exploiting independence relations in networks
• Arrange terms in convenient fashion
• Distribution each sum (over each variable) in as far as it will go
• Apply operations “inside out”, repeatedly elimination and creating new factors
 - Note that each step eliminates a variable
The Algorithm

- Given query variable Q, remaining variables Z. Let F be the set of factors corresponding to CPTs for \(\{Q\} \cup Z \).

1. Choose an elimination ordering \(Z_1, \ldots, Z_n \) of variables in Z.
2. For each \(Z_j \) -- in the order given -- eliminate \(Z_j \in Z \) as follows:
 (a) Compute new factor \(g_j = \Sigma_{Z_j} f_1 \times f_2 \times \ldots \times f_k \),
 where the \(f_i \) are the factors in F that include \(Z_j \)
 (b) Remove the factors \(f_i \) (that mention \(Z_j \)) from F
 and add new factor \(g_j \) to F
3. The remaining factors refer only to the query variable Q. Take their product and normalize to produce \(P(Q) \)
Example Again

Factors: $f_1(A)$, $f_2(B)$, $f_3(A, B, C)$, $f_4(C, D)$

Query: $P(D)$?

Elim. Order: A, B, C

Step 1: Add $f_5(B, C) = \sum_A f_3(A, B, C) f_1(A)$
 Remove: $f_1(A)$, $f_3(A, B, C)$

Step 2: Add $f_6(C) = \sum_B f_2(B) f_5(B, C)$
 Remove: $f_2(B)$, $f_5(B, C)$

Step 3: Add $f_7(D) = \sum_C f_4(C, D) f_6(C)$
 Remove: $f_4(C, D)$, $f_6(C)$

Last factor $f_7(D)$ is (possibly unnormalized) probability $P(D)$
• Computing posterior of query variable given evidence is similar; suppose we observe $C=c$:

$$
P(A|c) = \alpha P(A) P(c|A)$$

$$
= \alpha P(A) \sum_B P(c|B) P(B|A)$$

$$
= \alpha f_1(A) \sum_B f_3(B,c) f_2(A,B)$$

$$
= \alpha f_1(A) \sum_B f_4(B) f_2(A,B)$$

$$
= \alpha f_1(A) f_5(A)$$

$$
= \alpha f_6(A)$$

New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \sum_B f_2(A,B) f_4(B)$;

$$
f_6(A) = f_1(A) f_5(A)$$
The Algorithm (with Evidence)

Given query variable Q, evidence variables E (observed to be e), remaining variables Z. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.

1. Replace each factor $f \in F$ that mentions a variable(s) in E with its restriction $f_{E=e}$ (somewhat abusing notation)
2. Choose an elimination ordering Z_1, \ldots, Z_n of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q.
 Take their product and normalize to produce $P(Q)$
Example

Factors: $f_1(A)$ $f_2(B)$
 $f_3(A,B,C)$ $f_4(C,D)$
Query: $P(A)$?
Evidence: $D = d$
Elim. Order: C, B
Some Notes on VE

- After each iteration j (elimination of Z_j) factors remaining in set F refer only to variables $Z_{j+1},...,Z_n$ and Q
 - No factor mentions an evidence variable after the initial restriction

- Number of iterations is linear in number of variables
Some Notes on VE

- Complexity is linear in number of variables and exponential in size of the largest factor
 - Recall each factor has exponential size in its number of variables
 - Can’t do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger
Some Notes on VE

- Size of resulting factors is determined by elimination ordering
 - For polytrees, easy to find a good ordering
 - For general BN, sometimes good orderings exist and sometimes they don’t
 - in which case inference is exponential in number of variables
 - Finding the optimal elimination ordering is NP-hard
Elimination Ordering: Polytrees

- Inference is linear in size of the network
 - Ordering: eliminate only “singly-connected” nodes
 - Result: no factor ever larger than original CPTs
 - What happens if we eliminate B first?
Effect of Different Orderings

Suppose query variable is D. Consider different orderings for this network

- A,F,H,G,B,C,E: Good
- E,C,A,B,G,H,F: Bad
Relevance

• Certain variables have no impact on the query
 - In ABC network, computing $P(A)$ with no evidence requires elimination of B and C
 - But when you sum out these variables, you compute a trivial factor
 - Eliminating C: $g(C) = \sum_c f(B,C) = \sum_c \Pr(C|B)$.
 - Note that $P(clb)+P(\neg clb)=1$ and $P(cl\neg b)+P(\neg cl\neg b)=1$
Relevance: A Sound Approximation

- Can restrict our attention to **relevant** variables

- Given query Q, evidence E
 - Q is relevant
 - If any node Z is relevant, its parents are relevant
 - If $E \in E$ is a descendant of a relevant node, then E is relevant
Example

- $P(F)$
- $P(F|E)$
- $P(F|E,C)$

Diagram:

- A connected to B
- C connected to A and B
- G connected to C
- D connected to C
- F connected to C
- E connected to D and F
Probabilistic Inference

• Applications of BN in AI are virtually limitless
• Examples
 - mobile robot navigation
 - speech recognition
 - medical diagnosis, patient monitoring
 - fault diagnosis (e.g. car repairs)
 - etc
Where do BNs Come From?

• Often handcrafted
 - Interact with a domain expert to
 - Identify dependencies among variables (causal structure)
 - Quantify local distributions (CPTs)

• Empirical data, human expertise often used as a guide
Where do BNs Come From?

- Recent emphasis on learning BN from data
 - Input: a set of cases (instantiations of variables)
 - Output: network reflecting empirical distribution
 - Issues: identifying causal structure, missing data, discovery of hidden (unobserved) variables, incorporating prior knowledge (bias) about structure