
Introduction to Bayes 
Nets

CS 486/686: Introduction to Artificial Intelligence
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Introduction

• Review probabilistic inference, 
independence and conditional 
independence

• Bayesian Networks

- What they are

- What they mean
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Example: Joint Distribution
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache^sunny^cold)=0.108  P(~headache^sunny^~cold)=0.064

P(headache V sunny) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

P(headache)=0.108+0.012+0.072+0.008=0.2

marginalization



Example: Joint Distribution
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache ^ cold| sunny)= P(headache ^ cold ^ sunny)/P(sunny)  

                                        = 0.108/(0.108+0.012+0.016+0.064) 

                                        = 0. 54

P(headache ^ cold| ~sunny)= P(headache ^ cold ^ ~sunny)/P(~sunny)  

                                        = 0.072/(0.072+0.008+0.144+0.576) 

                                        = 0.09



Bayes Rule
• Note:

- P(A|B)P(B)=P(A∧B)=P(B∧A)=P(B|A)P(A)

• Bayes Rule:

- P(B|A)=[P(A|B)P(B)]/P(A)
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Memorize this!



Using Bayes Rule for Inference

• Often we want to form a hypothesis about the world based 
on what we have observed

• Bayes rule is vitally important when viewed in terms of 
stating the belief given to hypothesis H, given evidence e
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Posterior probability

Prior probability
Likelihood

Normalizing constant



Conditioning

• We define Pe(x)=P(x|e)

- Produce Pe by conditioning prior distribution 
on observed evidence

• Semantically we take original measure μ

- Set μ=0 for any world where e was false

- Set μ=μ(w)/P(e) for any e-world
- Normalization
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Semantics of Conditioning

8

p1

p2

p3

p4

E=e E=e

Pr

p1

p2

E=e

αp1

αp2

E=e

Pre
α = 1/(p1+p2) 
normalizing constant



Inference

• Semantically/conceptually, the picture is 
clear

• But several issues must be addressed
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Issue 1

• How do we specify the full joint 
distribution over a set of random 
variables X1, X2,..., Xn?

- What are the difficulties?
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Issue 2

• Inference in this representation is very 
slow
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Independence

• Two variables A and B are independent 
if knowledge of A does not change 
uncertainty of B (and vice versa)

- P(A|B)=P(A)

- P(B|A)=P(B)

- P(A∧B)=P(A)P(B)

- In general: P(X1,X2,...,Xn)=∏iP(Xi)
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Variable Independence

• Two variables X and Y are conditionally 
independent given variable Z iff x, y are 
conditionally independent given z for all x 
in Dom(X), y in Dom(Y) and z in Dom(Z)

- Also applies to sets of variables X, Y, Z

• If you know the value of Z (whatever it is) 
nothing you learn about Y will influence 
your beliefs about X
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What good is independence?

• Suppose (boolean) random variables 
X1,X2,...,Xn are mutually independent

- Specify the full joint using only n parameters 
instead of 2n-1

• How? Specify P(x1), P(x2),..., P(xn)

- Can now recover probability for any query
- P(x,y)=P(x)P(y) and P(x|y)=P(x) and P(y|x)=P(y)
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Value of Independence

• Complete independence reduce both 
representation of the joint and 
inference from O(2n) to O(n)!

• Unfortunately, rarely have complete 
mutual independence
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Conditional Independence

• Full independence is often too strong a 
requirement

• Two variables A and B are 
conditionally independent given C if

- P(a|b,c)=P(a|c) for all a,b,c

- i.e. knowing the value of B does not change 
the prediction of A if the value of C is 
known
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Value of Independence

• Fortunately, most domains do exhibit a 
fair amount of conditional independence

- Exploit conditional independence for both 
representation and inference

• Bayesian networks do just this

17



Notation

• P(X) for variable X (or set of variables) refers 
to (marginal) distribution over X

• P(X|Y) is the family of conditional 
distributions over X (one for each y in Dom(Y)

• Distinguish between P(X) (distribution) and 
P(x) (numbers)

- Think of P(X) as a function that accepts any xi in 
Dom(X) and returns a number
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Notation

• Think of P(X|Y) as a function that 
accepts any xi and yk and returns     
P(xi|yk)

• Note (again) that P(X|Y) is not a single 
distribution
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Exploiting Conditional 
Independence

• Consider the following story

- If Kate woke up too early (E), she probably needs 
coffee (C); if Kate needs coffee (C), she is likely to be 
grumpy (G). If she is grumpy, then it’s possible that the 
lecture won’t go smoothly (L). If the lecture does not go 
smoothly, then the students will likely be sad (S).
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E C L SG

E – Kate woke too early     G – Kate is grumpy     S – Students are sad 
                 C – Kate needs coffee     L– The lecture did not go smoothly



Conditional Independence

• If you learned any of E, C, G, or L then 
your assessment of P(S) would change

- if any of these are seen to be true, you 
would increase P(s) and decrease P(~s)

- So S is not independent of E, C, G, or L
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E C L SG



Conditional Independence

• But if you knew the value of L (true or 
false) then learning the values of E, C, or 
G would not influence P(S)

- Students are not sad because Kate did not 
have a coffee, they are sad because of the 
lecture

- So S is independent of E, C, and G, given 
L
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E C L SG



Conditional Independence

• S is independent of E, and C and G given L

• Similarly

- L is independent of E and C, given G

- G is independent of E given C

• This means that

- P(S|L,{G,C,E})=

- P(L|G, {C,E})=

- P(G|C,{E})=

- P(C|E)=

- P(E)=
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E C L SG



Conditional Independence

• By the chain rule

- P(S,L,G,C,E)=?

• By our independence assumptions

- P(S,L,G,C,E)=?

• We can specify the full joint by specifying five 
conditional distributions: P(S|L), P(L|G), P(G|C), 
P(C|E) and P(E)
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E C L SG



Example Quantification

• Specifying the joint requires only 9 parameters instead of 31 for explicit 
representation

- linear in number of vars instead of exponential

- linear in general if dependence has a chain structure
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E C L SG

Pr(e)   = 0.7 
Pr(~e) = 0.3

Pr(c|e)     = 0.9 
Pr(~c|e)   = 0.1 
Pr(c|~e)   = 0.5 
Pr(~c|~e) = 0.5

Pr(g|c)     = 0.3 
Pr(~g|c)   = 0.7 
Pr(g|~c)   = 1.0 
Pr(~g|~c) = 0.0

Pr(l|g)     = 0.2 
Pr(~l|g)   = 0.8 
Pr(l|~g)   = 0.1 
Pr(~l|~g) = 0.9

Pr(s|l)     = 0.9 
Pr(~s|l)   = 0.1 
Pr(s|~l)   = 0.1 
Pr(~s|~l) = 0.9



Inference is easy

• Want to know P(g)? Use marginalization!
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E C L SG

These are all terms specified in our local distributions!



Inference is Easy

• Computing P(g) in more concrete terms
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E C L SG



Bayesian Networks

• The structure just introduced is a 
Bayesian Network

- Graphical representation of direct 
dependencies over a set of variables + a set 
of conditional probability distributions 
(CPTs) quantifying the strength of the 
influences
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Bayesian Networks  
(aka belief networks, causal networks, probabilistic networks...)

• A BN over a set of variables {X1,...,Xn} consists of

- A directed acyclic graph whose nodes are the 
variables

- A set of CPTs (P(Xi|Parents(Xi)) for each Xi
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A

C

BP(a) 
P(~a)

P(b) 
P(~b)

P(c|a,b)     P(~c|a,b) 
P(c|~a,b)   P(~c|~a,b) 
P(c|a,~b)   P(~c|a,~b) 
P(c|~a,~b) P(~c|~a,~b)



Bayesian Networks
• Key notions

• parents of a node: Par(Xi)

• children of a node

• descendents of a node

• ancestors of a node

• family: set of nodes consisting 
of Xi and its parents

• CPT are defined over families
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A

C

B

D

Parents(C)={A,B} 
Children(A)={C} 
Descendents(B)={C,D} 
Ancestors{D}={A,B,C} 
Family{C}={C,A,B}



Bayes Net Example
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• A couple CPTS 
are “shown” 

• Explicit joint 
requires 211 -1 
=2047 params 

• BN requires only 
27 parms (the 
number of 
entries for each 
CPT is listed)



Semantics

• The structure of the BN means: every Xi 
is conditionally independent of all of its 
nondescendents given its parents
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   Pr(Xi | S ∪ Par(Xi)) = Pr(Xi | Par(Xi)) 

  

for any subset S ⊆ NonDescendants(Xi)



Semantics

• Imagine we make the query P(x1,x2,...,xn)

- = P(xn|xn-1,...,x1)P(xn-1|xn-2,...,x1)...P(x1)

- = P(xn|Par(xn))P(xn-1|Par(xn-1))…P(x1)

• The joint is recoverable using the 
parameters (CPT) specified in an 
arbitrary BN
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Constructing a BN
• Given any distribution over variables 

X1,X2,...,Xn, we can construct a BN that 
faithfully represents that distribution
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Take any ordering of the variables (say, the order given), and go through 
the following procedure for Xn down to X1. Let Par(Xn) be any subset S ⊆ 
{X1,…, Xn-1} such that Xn is independent of {X1,…, Xn-1} - S given S. Such a 
subset must exist. Then determine the parents of Xn-1 in the same way, 
finding a similar S ⊆ {X1,…, Xn-2}, and so on. In the end, a DAG is produced 
and the BN semantics must hold by construction.



Causal Intuitions
• The construction of a BN is simple

- Works with arbitrary orderings of variable set

- But some orderings are much better than others

- Generally, if ordering/dependence structure reflects causal 
intuitions, we get a more compact BN
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• In this BN, we’ve used the 
ordering Malaria, Cold, Flu, 
Aches to build BN for 
distribution P for Aches 
– Variable can only have 

parents that come 
earlier in the ordering



Causal Intuitions

• We could have used a different ordering

- Aches, Cold, Flu, Malaria
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• Mal depends on Aches; but 
it also depends on Cold, 
Flu given Aches 
– Cold, Flu explain away 

Mal given Aches 
• Flu depends on Aches; but 

also on Cold given Aches 
• Cold depends on Aches



Compactness
• In general, if each random variable is directly 

influenced by at most k others then each CPT 
will be at most 2k. Thus the entire network of n 
variables can be specified by n2k
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1+1+1+8=11 numbers 1+2+4+8=15 numbers



Testing Independence
• Given a BN, how we do determine if two 

variables X and Y are independent given 
evidence E?

- We use a simple graphical property

• D-separation: A set of variables E d-separates 
X and Y if it blocks every undirected path 
between X and Y

• X and Y are conditionally independent given E 
if E d-separates X and Y
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Blocking 
• P is an undirected path from X to Y in BN. 

Let E be evidence set. E blocks path P iff 
there is some node in Z on the path such 
that

- Case 1: one arc on P goes into Z and one goes 
out of Z and Z in E, or

- Case 2: both arcs on P leave Z and Z in E, or

- Case 3: both arcs on P enter Z and neither Z, nor 
any of its descendents, are in E
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Blocking
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Examples
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1. Subway and 
Thermometer? 

2. Aches and Fever? 

3. Aches and 
Thermometer? 

4. Flu and Malaria? 

5. Subway and 
ExoticTrip?



D-Separation
• Can be computed in linear time with a depth-

first search like algorithm

• Useful since now have a linear time 
algorithm for automatically inferring whether 
learning the value of one variables might 
given us any additional info about some 
other variable, given when we already know

- “Might” since vars might be conditionally 
independent but not d-seperated
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Other ways of determining 
conditional independence

• Non-descendents
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A node is conditionally 
independent of its 
non-descendents, 
given its parents.

X is conditionally 
independent of the 
Zijs given Uis



Example
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   Fever is 
conditionally 
independent of 
Jaundice given  
Malaria and Flu



Markov Blanket
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A node is conditionally 
independent of all 
other nodes in the 
network, given its 
parents, children and 
children’s parents 
(Markov blanket).



Markov Blanket
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   Malaria is 
conditionally 
independent of 
Aches given  
ExoticTrip, 
Jaundice, Fever 
and Flu 

Markov blanket



Next Class

• Inference in Bayes Nets!
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