
Uncertainty

CS 486/686: Introduction to Artificial Intelligence
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Introduction

• Logical agents make epistemological 
commitments that propositions are true, 
false, or unknown

- Once an agent has enough facts it can 
derive plans that are guaranteed to work
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Introduction

• But

- Agents rarely have access to the full truth 
about their environment
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Introduction
• The logical approach breaks down when 

dealing with uncertainty

• Example: Diagnosis

- ∀ p Symptom(p, Toothache)⇒Disease(p,Cavity)

- ∀ p Symptom(p, Toothache)⇒Disease(p,Cavity)∨ 
Disease(p,HitInTheJaw) ∨ Disease(p,GumDisease)∨

- ∀ p Disease(p, Cavity)⇒Symptom(p,Toothache)
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First Order Logic Fails Because

• We are lazy

- Too much work to write down all antecedents and 
consequences

• Theoretical ignorance

- Sometimes there is no complete theory

• Practical ignorance

- Even if we knew all the rules, we might be uncertain 
about a particular instance (not enough information 
yet)
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Probability to the Rescue

• Allows us to deal with uncertainty that 
comes from laziness or ignorance

• Clear semantics

• Provides principled answers for

- combining evidence, predictive and diagnostic 
reasoning, incorporation of new evidence

• Can be learned from data
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Discrete Random Variables

• Random variable A describes an outcome that can 
not be determined in advance (ie. roll of a dice)

• Discrete random variable: possible values come 
from a countable domain (sample space)

- If X is the outcome of a dice throw then X∈{1,2,3,4,5,6}

• Boolean random variable: A∈{True, False}

- A=The Canadian PM in 2040 will be male

- A=You have Ebola

- A=You wake up tomorrow with a headache
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Events
• An event is a complete specification of the state of the 

world in which an agent is uncertain

- Subset of the sample space

• Example

- (Cavity=True)∧(Toothache=True)

- Dice=2

• Events must be

- Mutually exclusive

- Exhaustive
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Probabilities

• We let P(A) denote the “degree of 
belief” we have that statement A is true

- “The fraction of possible worlds in which A is 
true”

• Note: P(A) DOES NOT correspond to a 
degree of truth
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Visualizing A
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Worlds in which A is False

Event space of all  
possible worlds. 
It’s area is 1

Worlds in which A is true

P(A) = Area of oval



Axioms of Probability
• 0≤P(A)≤1

• P(True)=1

• P(False)=0

• P(A∨B)=P(A)+P(B)-P(A∧B)

• These axioms limit the class of functions that 
can be considered as probability functions
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Interpreting the Axioms
• 0≤P(A)≤1

• P(True)=1

• P(False)=0

• P(A∨B)=P(A)+P(B)-P(A∧B)
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The area 
of A can’t 
be smaller 
than 0

A zero area 
would mean 
no world 
could ever 
have A as 
true



Interpreting the Axioms
• 0≤P(A)≤1

• P(True)=1

• P(False)=0

• P(A∨B)=P(A)+P(B)-P(A∧B)
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The area 
of A can’t 
be larger 
than 1

An area of 1 
would mean 
no world 
could ever 
have A as 
false



Interpreting the Axioms
• 0≤P(A)≤1

• P(True)=1

• P(False)=0

• P(A∨B)=P(A)+P(B)-P(A∧B)
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A
B

A∧B



Take the Axioms Seriously

• There have been attempts to use different 
methodologies for uncertainty

- Fuzzy logic

- Three-valued logic

- Dempster-Shafer

- ...

• But if you follow the axioms of probability then 
no one can take advantage of you :)
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Theorems from the Axioms
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• Thm: P(~A)=1-P(A) 
• Proof: P(AV~A)=P(A)+P(~A)-P(A^~A) 

     P(True)=P(A)+P(~A)-P(False) 
     1 = P(A)+P(~A)-0 
     P(~A)=1-P(A)



Multivalued Random Variables

• Assume domain of A (sample space) is 
{v1,v2, ...,vk}

• A can take on exactly one value out of 
this set

- P(A=vi, A=vj)=0 if i not equal to j

- P(A=v1 or A=v2 or ... or A=vk)=1
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Useful Fact

• Given axioms of probability and 
P(A=vi,A=vj)=0 for i ≠ j, and P(A=v1 or 
A=v2 or ... or A=vk)=1 then

- P(A=v1 or A=v2 or ... or A=vi)=∑j=1iP(A=vj)

- ∑j=1kP(A=vj)=1
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Terminology

• Probability Distribution

- A specification of a probability for each 
event in the sample space

• Assume the world is described by two 
or more random variables

- Joint probability distribution
- Specification of probabilities for all combinations of events
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Useful Fact

• Given axioms of probability and 
P(A=vi,A=vj)=0 for i ≠ j, and P(A=v1 or 
A=v2 or ... or A=vk)=1 then

- P(B, (A=v1 or A=v2 or ... or A=vi))=∑j=1iP(B, 
A=vj)

- ∑j=1kP(B,A=vj)=1
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Marginalization



Example: Joint Distribution
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache^sunny^cold)=0.108  P(~headache^sunny^~cold)=0.064

P(headache V sunny) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

P(headache)=0.108+0.012+0.072+0.008=0.2

marginalization



Conditional Probability

• P(A|B): fraction of worlds in which B is 
true that also have A true
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H

F

H=“Have headache” 
F=“Have Flu” 

P(H)=1/10 
P(F)=1/40 
P(H|F)=1/2

Headaches are rare and flu is 
rarer, but if you have the flu 
that there is a 50-50 chance 
you will have a headache



Conditional Probability
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H

F

H=“Have headache” 
F=“Have Flu” 

P(H)=1/10 
P(F)=1/40 
P(H|F)=1/2

Headaches are rare and flu is 
rarer, but if you have the flu 
that there is a 50-50 chance 
you will have a headache

P(H|F)= Fraction of flu inflicted  
worlds in which you have a  
headache 

=(# worlds with flu and headache)/  
  (# worlds with flu) 

= (Area of “H and F” region)/ 
   (Area of “F” region) 

= P(H ^ F)/ P(F)



Conditional Probability

• P(A|B)=P(A∧B)/P(B)

• Chain Rule:

- P(A∧B)=P(A|B)P(B)
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Memorize these!



Conditional Probability
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H

F

H=“Have headache” 
F=“Have Flu” 

P(H)=1/10 
P(F)=1/40 
P(H|F)=1/2

One day you wake up with a  
headache.  You think “Drat! 50% 
of flues are associated with 
headaches so I must have a 50-50 
chance of coming down with the 
flu”

Is your reasoning 
correct?



Conditional Probability
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H

F

H=“Have headache” 
F=“Have Flu” 

P(H)=1/10 
P(F)=1/40 
P(H|F)=1/2

One day you wake up with a  
headache.  You think “Drat! 50% 
of flues are associated with 
headaches so I must have a 50-50 
chance of coming down with the 
flu”

P(F∧H)= 

P(F|H)=



Example: Joint Distribution
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache ^ cold| sunny)= P(headache ^ cold ^ sunny)/P(sunny)  

                                        = 0.108/(0.108+0.012+0.016+0.064) 

                                        = 0. 54

P(headache ^ cold| ~sunny)= P(headache ^ cold ^ ~sunny)/P(~sunny)  

                                        = 0.072/(0.072+0.008+0.144+0.576) 

                                        = 0.09



Bayes Rule
• Note:

- P(A|B)P(B)=P(A∧B)=P(B∧A)=P(B|A)P(A)

• Bayes Rule:

- P(B|A)=[P(A|B)P(B)]/P(A)
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Memorize this!



General Forms of Bayes Rule
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Using Bayes Rule for Inference

• Often we want to form a hypothesis about the world based 
on what we have observed

• Bayes rule is vitally important when viewed in terms of 
stating the belief given to hypothesis H, given evidence e
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Posterior probability

Prior probability
Likelihood

Normalizing constant



Example

• A doctor knows that H1N1 causes a fever 
95% of the time. She knows that if a person 
is selected at random from the population, 
they have a 10-7 chance of having H1N1. 1 
in 100 people suffer from a fever.

• You go to the doctor complaining about a 
fever. What is the probability that H1N1 is 
the cause of the fever?
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Computing Conditional 
Probabilities

• Often we are interested in the posterior 
joint distribution of some query variable 
Y given specific evidence e for evidence 
variables E

- Hidden variables: X-Y-E

• If we had the joint prob. distribution then 
could marginalize

- P(Y|E=e)=α∑hP(Y∧(E=e)∧(H=h))
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Computing Conditional 
Probabilities

• Often we are interested in the posterior joint 
distribution of some query variable Y given 
specific evidence e for evidence variables E

- Hidden variables: X-Y-E

• If we had the joint prob. distribution then 
could marginalize

- P(Y|E=e)=α∑hP(Y∧(E=e)∧(H=h))
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Problem: Joint distribution is usually too big to handle



Independence

• Two variables A and B are independent 
if knowledge of A does not change 
uncertainty of B (and vice versa)

- P(A|B)=P(A)

- P(B|A)=P(B)

- P(A∧B)=P(A)P(B)

- In general: P(X1,X2,...,Xn)=∏iP(Xi)
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Conditional Independence

• Full independence is often too strong a 
requirement

• Two variables A and B are 
conditionally independent given C if

- P(a|b,c)=P(a|c) for all a,b,c

- i.e. knowing the value of B does not change 
the prediction of A if the value of C is 
known
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Conditional Independence

• Diagnosis problem

- Fl=Flu, Fv=Fever, C=Cough

• Full joint dist. has 23-1=7 independent entries

• If someone has the flu, we can assume that the 
probability of a cough does not depend on having 
a fever (P(C | Fl,Fv)=P(C | Fl))

• If the same condition holds if the patient does not 
have the Flu then C and Fv are conditionally 
independent given FL (P(C | ~Fl, Fv)=P(C | ~Fl))

36



Conditional Independence

• Full distribution can be written as

• We only need 5 numbers!

• Huge savings if there are lots of variables
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P (C, F l, FC) = P (C, Fv|Fl)P (Fl)
= P (C|Fl)P (Fv|Fl)P (Fl)



Conditional Independence

• Such a probability distribution is 
sometimes called a Naive Bayes 
model

• In practice they work well - even when 
the independence assumption is not 
true
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Summary

• What you should know

- Basic definitions and axioms

- Marginalization

- Conditional Probabilities

- Chain Rule and Bayes Rule

- Independence and Conditional 
Independence
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