
Classical Planning

CS 486/686: Introduction to Artificial Intelligence

1

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

2

Introduction

• Last class: Logical Inference

- How to have an agent understand its environment

using logic.

• This class: Planning

- How to have an agent change its environment,

using logic.

3

Planning

• A Plan is a collection of actions toward

solving a task (or achieving a goal).

4

Planning

• Properties of (classical) planning:

-Fully observable

-Deterministic

-Finite

-Static

-Discrete

5

Planning Problem

•Problem: Find a sequence of actions

that moves the world from one state to

another state

• The shortest (or fastest) plan is optimal

•Need to reason about what different actions will do to

the world

6

Planning Problem

•Goal: Assignment is written, AND Student has

Coffee, AND (John has Assignment OR Kate

has Assignment)....

•Current State: Assignment is not written, AND

Student has no Coffee, AND Coffee_Pot is

Empty AND Coffee_Mug is Dirty...

• To Do: Clean Coffee_mug AND Place Coffee

in Coffee_Pot AND Activate Coffee_Pot AND

Write Assignment_Introduction AND...

7

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

8

Planning as Theorm Proving

1.Represent states as FOL expressions.

2.Represent actions as mappings from

state to state (like rules of inference)

3.Apply theorem provers (search)

9

Situation Calculus

• A situation is a representation of the

state of the world.

• All our predicates and functions should

depend on the situation.

- e.g. crown(John) -> crown(John, s)

- e.g. in(Room1, Robot, 1) -> in(Room1, Robot, s)

10

Situation Calculus

11

Situation Calculus

12

Actions

13

• Actions make atomic changes to the

environment

• Allows transitions between situations

- e.g. result(clean(Coffee_Mug), s0)) is s0

where clean(Coffee_Mug) is now true.

Actions Example

14

Describing Actions

15

• Actions are described by a possibility

axiom and effect axiom

• Possibility axiom ~ precondition

• Effect axiom ~ postcondition

Describing Actions

16

Planning

17

Resolution

18

• Convert to CNF

(possibility axiom) (effect axiom)

- OnTable(y,s) AND Clear(y,s) AND HandEmpty(s)

Holding(y, Result(Pickup(y),s)) AND ~HandEmpty(y,

Result(Pickup(y),s)....

- ~OnTable(y,s) OR ~Clear(y,s) OR ~HandEmpty(s) OR

Holding(y,Result(Pickup(y),s))

- ~OnTable(y,s) OR ~Clear(y,s) OR ~HandEmpty(s) OR

~HandEmpty(y,Result(Pickup(y),s))

- ...

The Answer

19

1.Ask query:

2.Use Resolution to find z.

3. z = Result(Pickup(B),s0)

- A situation where you are holding B is called

"Result(Pickup(B),s0)".

- Name communicates the actions to take to achieve the goal

The Frame Problem

•What about the question:

- On(C,A,Result(Pickup(B), s0)?

- Is C still on A after we pick up B?

20

The Frame Problem

•What about the question:

- On(C,A,Result(Pickup(B), s0)?

- Is C still on A after we pick up B?

21

The Frame Problem

•What about the question:

- On(C,A,Result(PickUp(B), s0)?

- Is C still on A after we pick up B?

22

The Frame Problem

•Resolution computes logical consequences.

•Consequences of PickUp(B) do not specify

anything about what happens to On(A,C)

•Recording all non-effects of actions becomes

tedious in detailed domains.

- In some (but not all) worlds after PickUp(B),

On(A,C).

23

A Better Way?

•Planning as theorem proving generally not

efficient.

•Can we specialize for the domain?

- Connect actions and state descriptions

- Allow adding actions in any order

- Partition into subproblems

- Use a restricted language for describing goals,

states and actions

24

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

25

Planning Languages

• Planning languages provide a formal,

efficient, way to represent problems,

using a restricted subset of FOL

• STRIPS used an early Planning

Language

• Many important successors based on

this language

26

STRIPS Language

•Stanford Research Institute Problem Solver

•Domain: Only typed objects allowed (ground terms)

- Allowed: Coffee_Pot, Shakey_Robot

- Not Allowed: x, y, father(x)

•States: Conjunctions of predicates over objects

- Allowed: Full(Coffee_Pot) AND On(Robot, Coffee_Pot)

- Not Allowed: On(x,y) AND Full(x)

•Closed World Assumption: Things not explicitly stated

are false.

27

STRIPS Language

•Goals: Conjunctions of positive ground literals

- Allowed: isHappy(Robot) AND isFull(Coffee_Pot)

- Not Allowed:

- ~isHappy(Robot)

- isHappy(father(Robot))

- isHappy(Robot) OR isFull(Coffee_Pot)

28

STRIPS Language

•Actions: Specified by preconditions and effects

- E.g.: Action Fly(p,from,to)

- Precondition: At(p, from) AND isPlane(p) AND isAirport(from AND

isAirport(to)

- Effect: ~At(p,from) AND At(p,to)

29

STRIPS Language

•Actions Scheme:

- Name and parameter list (e.g. Fly(p,from,to))

- Precondition as a conjunction of function-free positive literals

- Effect as a conjunction of function-free literals

- Variables in the effect must be from the parameter list.

30

Effects of Actions

•When preconditions are false, actions have no

effect.

• When preconditions are true, actions change

the world by:

1. Deleting any precondition terms that are now false.

2. Adding any new terms that are now true.

• Example: Fly(p,to,from) first deletes At(p,from), and

then adds At(p,to).

• Order matters: Delete first

31

STRIPS Language

• Solution: Sequence of actions that, when

applied to start state, yield goal state.

32

Frame Problem?

• No problem here!

• Closed World Assumption: anything

unmentioned is implicitly unchanged.

• Reduced language efficient inference

33

Pros and Cons

• Pros:

- Restricted language means fast inference

- Simple conceptualization: Every action just

deletes or adds propositions to KB

• Cons:

- Assumes actions produce few changes

- Restricted language means we can't

represent every problem
34

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

35

Forward Planning

• Planning as Search

- Start State: Initial state of the world

- Goal State: Goal state of the world

- Successors: Apply every action with a

satisfied precondition

- Costs: Usually 1 per action

• Aka "Progressive Planning"

36

Forward Planning

37

Forward Planning

38

Forward Planning

39

Forward Planning

40

Backward Planning

• Relevant actions

- Only consider actions that actually satisfy

(add) a goal state literal.

• Consistent actions

- Only consider actions that don't undo

(delete) a desired literal

41

Backward Planning

- Backward Search

- Start at the Goal state G

- Pick a consistent, relevant action A

- Delete whatever part of G is satisfied by A

- Add A's precondition to G (except duplicates)

- Repeat with updated G

- Aka "regression planning"

42

Backward Planning

43

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

44

Planning Heuristics

• State space can be very (very) large

• Many domain independent heuristics

45

Planning Heuristics

• Generally based on relaxation

- ignore effects undoing part of the goal state

- ignore prerequisites when picking actions

- assume sub-problems never interact

46

Planning Heuristics

• Better heuristics represent some co-

dependecies between goals as a graph

• The algorithm GraphPlan can reason

over this graph directly

- This is a very fast approach in practice.

47

Summary

• Planning is another form of Search

• Planning is usually done in specialized

representation languages

• Like CSPs, we can exploit the problem

structure to get general heuristics

48

Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics

• The Sussman Anomaly

49

STRIPS Algorithm

• Uses a Regression Planner

• Stores current state of the world

• Stores a stack of goals and actions

50

STRIPS Algorithm

• Push initial goals in any order.

• If stack top is a goal:

- Push relevant action, and then its

prerequisites (new goals).

- Or just pop if it's already true in the current state.

• If stack top is an action:

- If prereqs all satisfied, alter state.

- Push prereqs again if some are unsatisfied.

51

Sussman Anomaly

• STRIPS seems like a good planning

algorithm

- Simple

- Representation can model many problems

• ... but STRIPS cannot always find a plan

52

Sussman Anomaly

53

The impossible problem:

Stack A on B, and B on C

Sussman Anomaly

• A problem with all approaches that

naively split problems into subgoals

• STRIPS is incomplete.

54

