Classical Planning

CS 486/686: Introduction to Artificial Intelligence
Outline

• Planning Problems
• Planning as Logical Reasoning
• STRIPS Language
• Planning Algorithms
• Planning Heuristics
Introduction

• Last class: Logical Inference
 - How to have an agent **understand** its environment using logic.

• This class: Planning
 - How to have an agent **change** its environment, using logic.
Planning

- A Plan is a collection of actions toward solving a task (or achieving a goal).
Properties of (classical) planning:

- Fully observable
- Deterministic
- Finite
- Static
- Discrete
Planning Problem

• **Problem**: Find a sequence of actions that moves the world from one state to another state

• The shortest (or fastest) plan is **optimal**

• Need to **reason** about what different actions will do to the world
Planning Problem

• **Goal:** Assignment is written, AND Student has Coffee, AND (John has Assignment OR Kate has Assignment)....

• **Current State:** Assignment is not written, AND Student has no Coffee, AND Coffee_Pot is Empty AND Coffee_Mug is Dirty...

• **To Do:** Clean Coffee_mug AND Place Coffee in Coffee_Pot AND Activate Coffee_Pot AND Write Assignment_Introduction AND...
Outline

• Planning Problems

• Planning as Logical Reasoning

• STRIPS Language

• Planning Algorithms

• Planning Heuristics
Planning as Theorem Proving

1. Represent states as FOL expressions.

2. Represent actions as mappings from state to state (like rules of inference)

3. Apply theorem provers (search)
Situation Calculus

• A **situation** is a representation of the state of the world.

• All our predicates and functions should depend on the situation.
 - e.g. crown(John) -> crown(John, s)
 - e.g. in(Room1, Robot, 1) -> in(Room1, Robot, s)
Situation Calculus

Situation S0

```
in(robby, room1, s0)
in(robby, room2, s0)
```

Situation S1

```
~in(robby, room1, s1)
in(robby, room2, s1)
```
Situation Calculus

Robot hand

C
A

B

Clear(c,s0)
On(c,a,s0)
Clear(b,s0)
OnTable(b,s0)
OnTable(a,s0)
HandEmpty(s0)
• **Actions** make atomic changes to the environment

• Allows transitions between situations

 - e.g. result(clean(Coffee_Mug), s0)) is s0 where clean(Coffee_Mug) is now true.
Actions Example

\[
\begin{align*}
\text{Clear}(c,s0) \\
\text{On}(c,a,s0) \\
\text{Clear}(b,s0) \\
\text{OnTable}(b,s0) \\
\text{OnTable}(a,s0) \\
\text{HandEmpty}(s0) \\
\text{PickUp}(c) \\
\text{Clear}(a,s1) \\
\text{Clear}(b,s1) \\
\text{OnTable}(b,s1) \\
\text{OnTable}(a,s1) \\
\sim\text{HandEmpty}(s1)
\end{align*}
\]
Describing Actions

• Actions are described by a possibility axiom and effect axiom
• Possibility axiom \(\sim \) precondition
• Effect axiom \(\sim \) postcondition
Describing Actions

Preconditions

\[\text{Clear}(C,S) \land \text{HandEmpty}(S) \]

Effects

\[\text{Holding}(C, \text{Result}(\text{PickUp}(C), S)) \]

\[\forall x \neg \text{HandEmpty}(\text{Result}(\text{PickUp}(C), S)) \]

PickUp(C)
Planning

Making plans
1. $\text{Clear}(C,s0)$
2. $\text{On}(C,A,s0)$
3. $\text{Clear}(B,s0)$
4. $\text{OnTable}(A,s0)$
5. $\text{OnTable}(B,s0)$
6. $\text{HandEmpty}(s0)$

Query the KB about what actions should be performed in order to achieve some goal (expressed as a predicate)

$\exists z \ \text{Holding}(B,z)$
7. $(\sim \text{Holding}(B,Z) \lor \text{ans}(Z))$
Resolution

• Convert to CNF

(possibility axiom) \rightarrow (effect axiom)

- \text{OnTable}(y,s) \text{ AND Clear}(y,s) \text{ AND HandEmpty}(s) \rightarrow \text{Holding}(y, \text{Result}(\text{Pickup}(y),s)) \text{ AND } \neg \text{HandEmpty}(y, \text{Result}(\text{Pickup}(y),s))\ldots

- \neg \text{OnTable}(y,s) \text{ OR } \neg \text{Clear}(y,s) \text{ OR } \neg \text{HandEmpty}(s) \text{ OR } \text{Holding}(y,\text{Result}(\text{Pickup}(y),s))

- \neg \text{OnTable}(y,s) \text{ OR } \neg \text{Clear}(y,s) \text{ OR } \neg \text{HandEmpty}(s) \text{ OR } \neg \text{HandEmpty}(y,\text{Result}(\text{Pickup}(y),s))

- \ldots
1. Ask query: \[\exists z \text{ Holding}(B, z) \]
 \[\land \quad 7. \left(\neg \text{Holding}(B, z) \lor \text{ans}(Z) \right) \]

2. Use Resolution to find \(z \).

3. \(z = \text{Result}(\text{Pickup}(B), s0) \)

 - A situation where you are holding \(B \) is called "Result(Pickup(B),s0)".

 - Name communicates the actions to take to achieve the goal
The Frame Problem

• What about the question:
 - \(\text{On}(C,A,\text{Result(Pickup(B), s0)}) \)?
 - Is C still on A after we pick up B?

1. \(\text{Clear}(C,s0) \)
2. \(\text{On}(C,A,s0) \)
3. \(\text{Clear}(B,s0) \)
4. \(\text{OnTable}(A,s0) \)
5. \(\text{OnTable}(B,s0) \)
6. \(\text{HandEmpty}(s0) \)
7. \(\sim \text{OnTable}(y,s) v \sim \text{Clear}(y,s) v \sim \text{HandEmpty}(s) v \text{Holding}(y,\text{Result(PickUp(y),s)}) \)
8. \(\sim \text{OnTable}(y,s) v \sim \text{Clear}(y,s) v \sim \text{HandEmpty}(y(s)) v \sim \text{HandEmpty}(\text{Result(PickUp(y),s)}) \)
9. \(\sim \text{OnTable}(y,s) v \sim \text{Clear}(y,s) \sim \text{HandEmpty}(s) v \sim \text{OnTable}(y,\text{Result(PickUp(y),s)}) \)
10. \(\sim \text{OnTable}(y,s) v \sim \text{Clear}(y,s) v \sim \text{HandEmpty}(s) v \sim \text{Clear}(y,\text{Result(PickUp(y),s)})) \)
11. \(\sim \text{On}(C,A,\text{Result(PickUp(B),s0)}) \)
The Frame Problem

• What about the question:
 - On(C,A,Result(Pickup(B), s0))?
 - Is C still on A after we pick up B?

1. Clear(C,s0)
2. On(C,A,s0)
3. Clear(B,s0)
4. OnTable(A,s0)
5. OnTable(B,s0)
6. HandEmpty(s0)

7. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(y) v Holding(y,Result(PickUp(y),s))
8. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(y(s)v~HandEmpty(Result(PickUp(y),s)))
9. ~OnTable(y,s)v~Clear(y,s)~HandEmpty(s)v~OnTable(y,Result(PickUp(y),s))
10. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(s)v~Clear(y,Result(PickUp(y),s)))
11. ~On(C,A,Result(PickUp(B),s0))
The Frame Problem

• What about the question:

 - \(\text{On}(C,A,\text{Result}(\text{PickUp}(B), s0)) \)?

 - Is \(C \) still on \(A \) after we pick up \(B \)?

```
1. Clear(C,s0)
2. On(C,A,s0)
3. Clear(B,s0)
4. OnTable(A,s0)
5. OnTable(B,s0)
6. HandEmpty(s0)
7. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(s) vHolding(y,Result(PickUp(y),s))
8. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(y(s)v~HandEmpty(Result(PickUp(y),s)))
9. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(s)v~OnTable(y,Result(PickUp(y),s)))
10. ~OnTable(y,s)v~Clear(y,s)v~HandEmpty(s)v~Clear(y,Result(PickUp(y),s)))
11. ~On(C,A,Result(PickUp(B),s0))
```
The Frame Problem

• Resolution computes logical consequences.
• Consequences of PickUp(B) do not specify anything about what happens to On(A,C).
• Recording all non-effects of actions becomes tedious in detailed domains.
 - In some (but not all) worlds after PickUp(B), On(A,C).
A Better Way?

- Planning as theorem proving generally not efficient.

- Can we specialize for the domain?
 - Connect actions and state descriptions
 - Allow adding actions in any order
 - Partition into subproblems
 - Use a restricted language for describing goals, states and actions
Outline

• Planning Problems
• Planning as Logical Reasoning
• STRIPS Language
• Planning Algorithms
• Planning Heuristics
Planning Languages

• Planning languages provide a formal, efficient, way to represent problems, using a restricted subset of FOL

• STRIPS used an early Planning Language

• Many important successors based on this language
STRIPS Language

• **Stanford Research Institute Problem Solver**

• **Domain:** Only typed objects allowed (ground terms)
 - Allowed: Coffee_Pot, Shakey_Robot
 - Not Allowed: x, y, father(x)

• **States:** Conjunctions of predicates over objects
 - Allowed: Full(Coffee_Pot) AND On(Robot, Coffee_Pot)
 - Not Allowed: On(x, y) AND Full(x)

• **Closed World Assumption:** Things not explicitly stated are false.
STRIPS Language

- **Goals:** Conjunctions of positive ground literals
 - Allowed: isHappy(Robot) AND isFull(Coffee_Pot)
 - Not Allowed:
 - \(\neg \text{isHappy}(\text{Robot}) \)
 - isHappy(father(Robot))
 - isHappy(Robot) OR isFull(Coffee_Pot)
STRIPS Language

• Actions: Specified by preconditions and effects
 - E.g.: Action Fly(p, from, to)
 - Precondition: At(p, from) AND isPlane(p) AND isAirport(from AND isAirport(to))
 - Effect: ~At(p, from) AND At(p, to)
• Actions Scheme:
 - **Name and parameter list** (e.g. Fly(p, from, to))
 - **Precondition** as a conjunction of function-free **positive** literals
 - **Effect** as a conjunction of function-free literals
 - Variables in the effect must be from the parameter list.
Effects of Actions

• When preconditions are false, actions have no effect.

• When preconditions are true, actions change the world by:
 1. Deleting any precondition terms that are now false.
 2. Adding any new terms that are now true.

• Example: Fly(p,to,from) first deletes At(p,from), and then adds At(p,to).

• Order matters: Delete first
• **Solution**: Sequence of actions that, when applied to start state, yield goal state.
Frame Problem?

• No problem here!

• Closed World Assumption: anything unmentioned is implicitly unchanged.

• Reduced language ➔ efficient inference
Pros and Cons

• Pros:
 - Restricted language means fast inference
 - Simple conceptualization: Every action just deletes or adds propositions to KB

• Cons:
 - Assumes actions produce few changes
 - Restricted language means we can't represent every problem
Outline

• Planning Problems
• Planning as Logical Reasoning
• STRIPS Language
• Planning Algorithms
• Planning Heuristics
Forward Planning

- Planning as Search
 - **Start State:** Initial state of the world
 - **Goal State:** Goal state of the world
 - **Successors:** Apply every action with a satisfied precondition
 - **Costs:** Usually 1 per action

- Aka "Progressive Planning"
Forward Planning

Example: Block World

```
| A | C | B |
```

- **Clear(c)**
- **Clear(a)**
- **Clear(b)**
- **OnTable(b)**
- **OnTable(a)**
- **OnTable(c)**
- **HandEmpty()**

Goal

```
| A | B |

Stack(x, y)
- P: Holding(x), Clear(y)
- E: On(x, y), Clear(x),
  HandEmpty, ~Clear(y),
  ~Holding(x)

UnStack(x, y)
- P: Clear(x), On(x, y), HandEmpty
- E: Clear(y), Holding(x),
  ~Clear(x), ~On(x, y),
  ~HandEmpty

Pickup(x)
- P: OnTable(x), Clear(x), HandEmpty
- E: Holding(x), ~OnTable(x), ~HandEmpty

PutDown(x)
- P: Holding(x)
- E: OnTable(x), Clear(x), HandEmpty,
  ~Holding(x)
```
Forward Planning

Example: Progressive Planner

A C B
Forward Planning

Example: Progressive Planner

```
       PickUp(x)
      /     \
     A   C   B
   /   \   /   \
  A     C  A     B
 /     /   /     /
C     B   A     C
```

39
Forward Planning

Example: Progressive Planner

Diagram showing the process of moving objects (A, B, C) and their actions (PickUp(B), PutDown(B), Stack(B, C)).
Backward Planning

• Relevant actions
 - Only consider actions that actually satisfy (add) a goal state literal.

• Consistent actions
 - Only consider actions that don't undo (delete) a desired literal
Backward Planning

- Backward Search
 - Start at the Goal state G
 - Pick a consistent, relevant action A
 - Delete whatever part of G is satisfied by A
 - Add A's precondition to G (except duplicates)
 - Repeat with updated G

- Aka "regression planning"
Backward Planning

(a)
\[\text{At}(P_1, A) \]
\[\text{At}(P_2, A) \]
\[\text{Fly}(P_1, A, B) \]
\[\text{At}(P_1, B) \]
\[\text{At}(P_2, A) \]

(b)
\[\text{At}(P_1, A) \]
\[\text{At}(P_2, B) \]
\[\text{Fly}(P_1, A, B) \]
\[\text{At}(P_1, B) \]
\[\text{At}(P_2, B) \]
\[\text{Action}(\text{Fly}(p, \text{from}, to)) \]
\[\text{PRECOND: } \text{At}(p, \text{from}) \land \text{Plane}(p) \land \text{Airport}(\text{from}) \land \text{Airport}(to) \]
\[\text{EFFECT: } \neg \text{At}(p, \text{from}) \land \text{At}(p, to) \]
Outline

• Planning Problems
• Planning as Logical Reasoning
• STRIPS Language
• Planning Algorithms
• Planning Heuristics
Planning Heuristics

• State space can be very (very) large

• Many domain independent heuristics
Planning Heuristics

- Generally based on relaxation
 - ignore effects undoing part of the goal state
 - ignore prerequisites when picking actions
 - assume sub-problems never interact
Planning Heuristics

• Better heuristics represent some co-depencencies between goals as a graph.

• The algorithm \textbf{GraphPlan} can reason over this graph directly.

 - This is a very fast approach in practice.
Summary

• Planning is another form of Search
• Planning is usually done in specialized representation languages
• Like CSPs, we can exploit the problem structure to get general heuristics
Outline

• Planning Problems
• Planning as Logical Reasoning
• STRIPS Language
• Planning Algorithms
• Planning Heuristics
• The Sussman Anomaly
STRIPS Algorithm

- Uses a Regression Planner
- Stores current state of the world
- Stores a stack of goals and actions
STRIPS Algorithm

• Push initial goals in any order.

• If stack top is a goal:
 - Push relevant action, and then its prerequisites (new goals).
 - Or just pop if it's already true in the current state.

• If stack top is an action:
 - If prereqs all satisfied, alter state.
 - Push prereqs again if some are unsatisfied.
Sussman Anomaly

- STRIPS seems like a good planning algorithm
 - Simple
 - Representation can model many problems
- ... but STRIPS cannot always find a plan
Sussman Anomaly

The impossible problem:
Stack A on B, and B on C
Sussman Anomaly

• A problem with all approaches that naively split problems into subgoals
• STRIPS is incomplete.