Adversarial Search

CS 486/686: Introduction to Artificial Intelligence

Introduction

- So far have only been concerned with single agents
- Today
 - Multiple agents planning against each other
 - Adversarial settings

Outline

- Games
- Minimax search
- Alpha-beta pruning
- Evaluation functions
- Coping with chance
- Game programs

Games

- Games are the oldest, most well-studied domain in Al
- Why?
 - They are fun
 - Easy to represent, rules are clear
 - State spaces can be very large
 - In chess, the search tree has $\sim 10^{154}$ nodes
 - Like the "real world" in that decisions have to be made and time is important
 - Easy to determine when a program is doing well

Types of Games

Perfect vs Imperfect Information

- Perfect information: You can see the entire state of the game
- Imperfect information:

Deterministic vs Stochastic

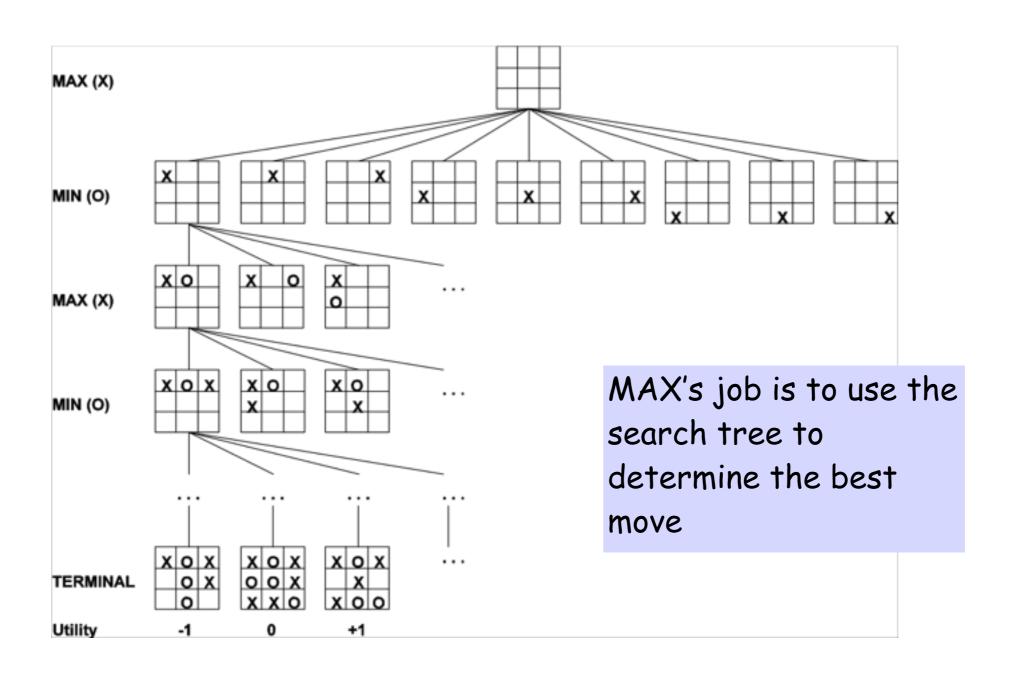
- Deterministic: change in state is fully controlled by the players
- Stochastic: change in state is partially determined by chance

Games as Search Problems

- 2-player perfect information game
- State: board configuration plus the player who's turn it is to move
- Successor function: given a state, returns a list of (move, state) pairs indicating legal move and resulting state
- Terminal state: states where there is a win/loss/draw
- Utility function: assigns a numerical value to terminal states
- Solution: a strategy (way of picking moves) that wins the game

Game Search Challenge

- What makes game search challenging?
 - There is an opponent
 - The opponent is malicious
 - it wants to win (by making you lose)
 - We need to take this into account when choosing moves
- Notation:
 - MAX player wants to maximize its utility
 - MIN player wants to minimize its utility



Optimal Strategies

- In standard search
 - Optimal solution is sequence of moves leading to winning terminal state
- Strategy (from MAX's perspective)
 - Specify a move for the initial state
 - Specify a move for all possible states arising from MIN's response
 - Then all possible responses to all of MIN's responses to MAX's previous moves

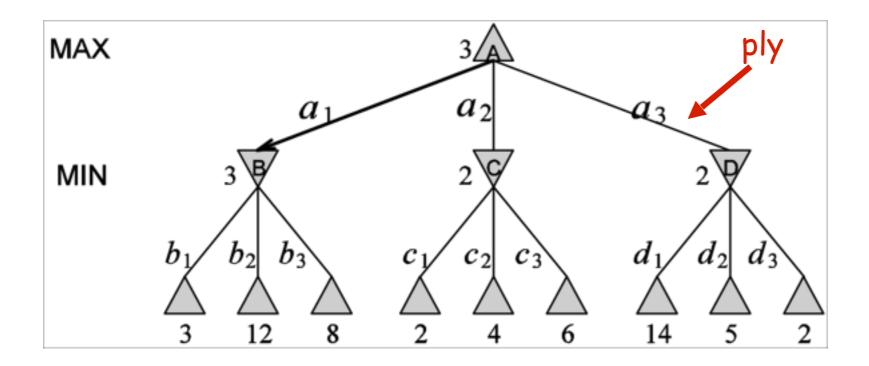
– ...

Optimal Strategies

- Goal: Find optimal strategy
- What do we mean by optimal?
 - Strategy that leads to outcomes at least as good as any other strategy, given that MIN is playing optimally
 - Equilibrium (game theory)
- Today we focus mainly on zero-sum games of perfect information
 - Easy games according to game theory

Minimax Value

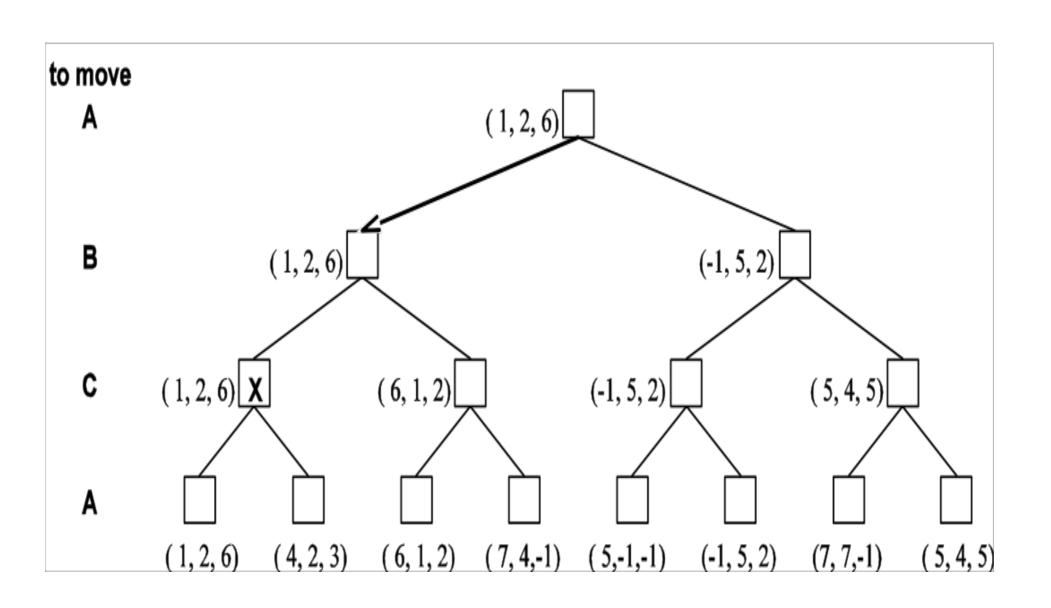
MINIMAX-VALUE(n) =



Properties of Minimax

- Complete if tree is finite
- Time complexity: O(bm)
 - m is depth of tree
- Space complexity: O(bm)
 - It is DFS
- Optimal against an optimal opponent
 - If opponent is not playing optimally, then may be better off doing something else

Minimax and Multi-Player Games



Question

 Can we now write a program that will play chess reasonably well?

Question

- Can we now write a program that will play chess reasonably well
 - For chess b~35 and m~100

Alpha-Beta Pruning

- If we are smart (and lucky) we can do pruning
 - Eliminate large parts of the tree from consideration
- Alpha-beta pruning applied to a minimax tree
 - Returns the same decision as minimax
 - Prunes branches that cannot influence final decision

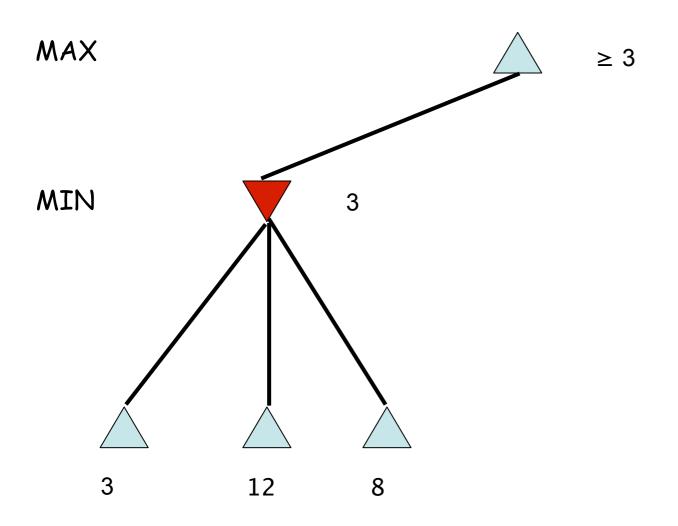
Alpha-Beta Pruding

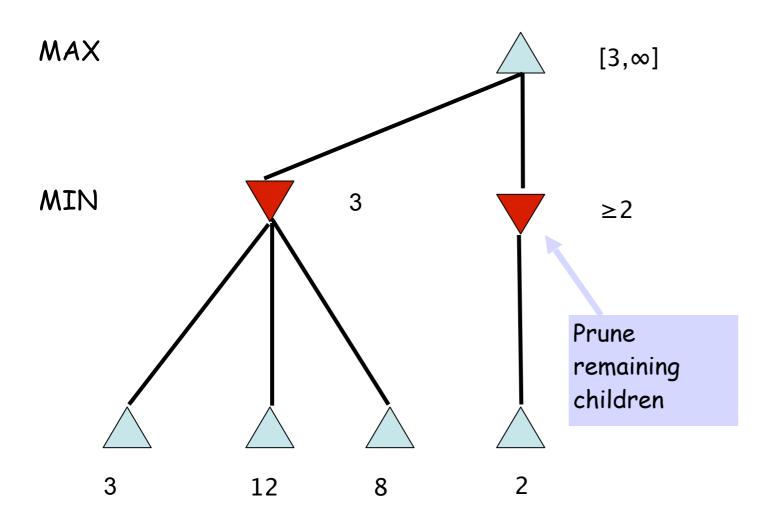
• Alpha:

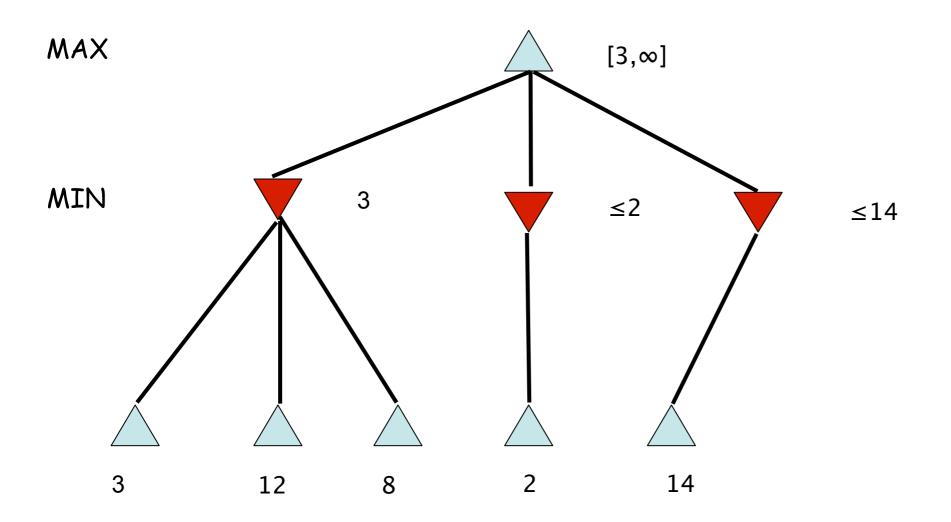
 Value of best (highest value) choice we have found so far on path for MAX

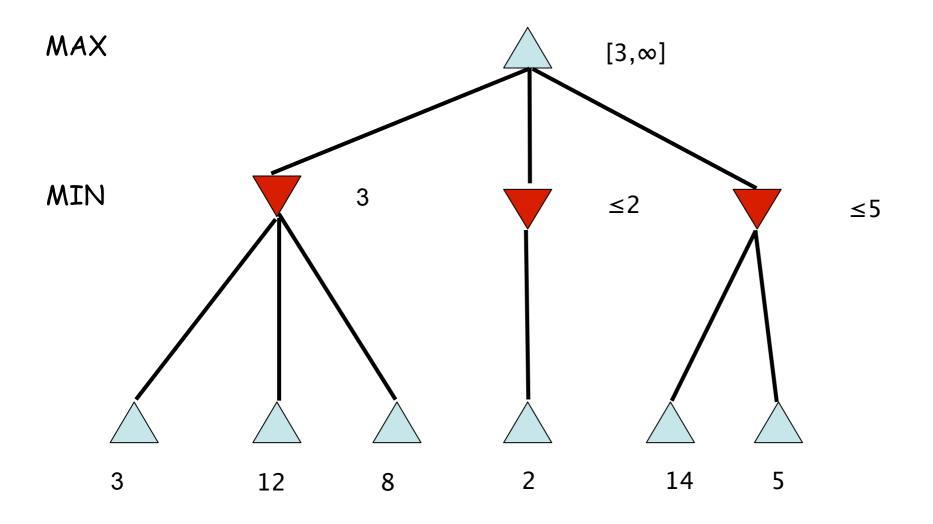
Beta:

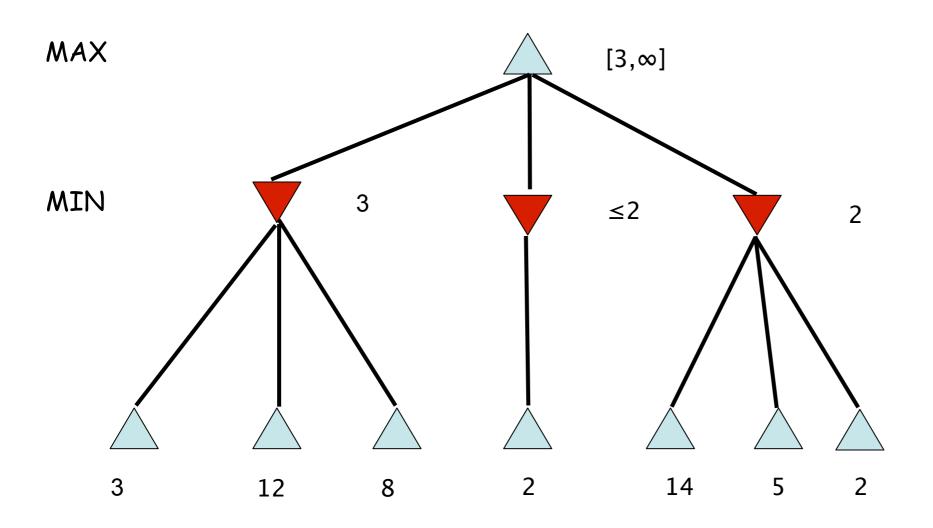
- Value of best (lowest value) choice we have found so far on path for MIN
- Update alpha and beta as search continues
- Prune as soon as value of current node is known to be worse than current alpha or beta values for MAX or MIN











Properties of Alpha-Beta

- Pruning does not affect the final result
 - Why?
- Move ordering is important
- Alpha-beta demonstrates the value of reasoning about which computations are important

Real-Time Decisions

- Alpha-Beta can be a huge improvement over minimax
 - Still not good enough
 - Need to search to terminal states for at least part of search space
 - Need to make decisions quickly
- Solution
 - Heuristic evaluation function + cutoff tests

Evaluation Functions

- Apply an evaluation function to a state
 - If terminal state, function returns actual utility
 - If non-terminal, function returns estimate of the expected utility
- Function must be fast to compute

Evaluation Functions

- How do we get evaluation functions?
 - Expert knowledge
 - Learned from experience
- Look for features of states
 - Weighted linear function Eval(s)= $\sum_i w_i f_i(s)$

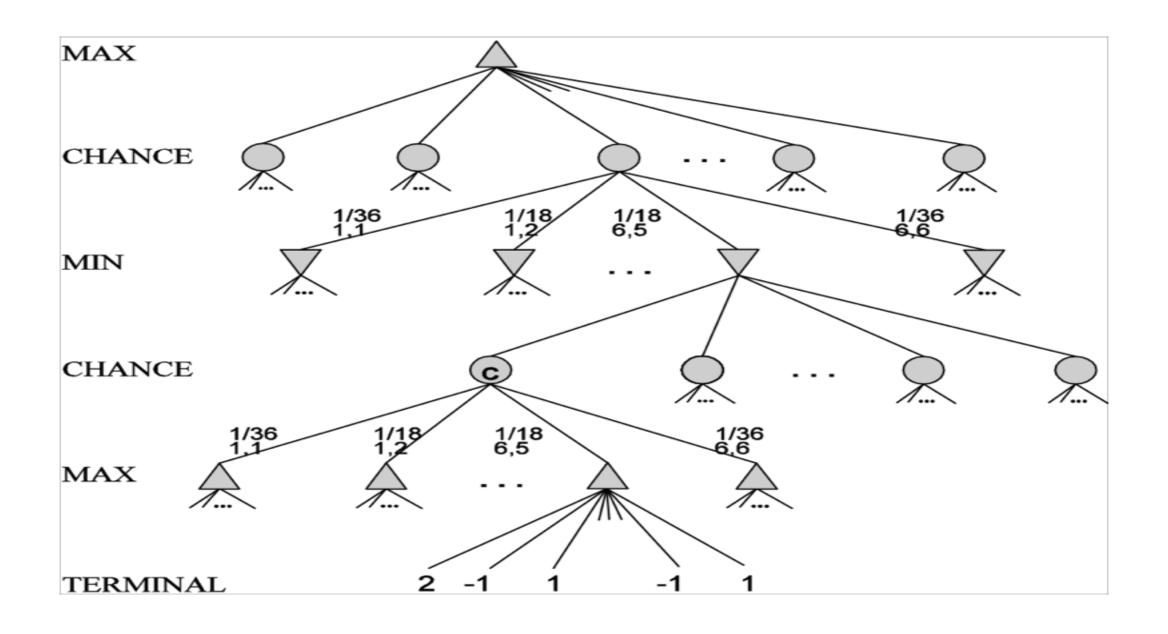
Cutting Off Search

- Do we have to search to terminal states?
 - No! Cut search early and apply evaluation function
- When?
 - Arbitrarily (but deeper is better)
 - Quiescent states
 - States that are "stable"
 - Singular extensions
 - Searching deeper when you have a move that is "clearly better"
 - Can be used to avoid the horizon effect

Cutting Off Search

- How deep?
 - Novice player
 - 5-ply (minimax)
 - Master player
 - 10-ply (alpha-beta)
 - Grandmaster
 - 14-ply + fantastic evaluation function, opening and endgame databases,...

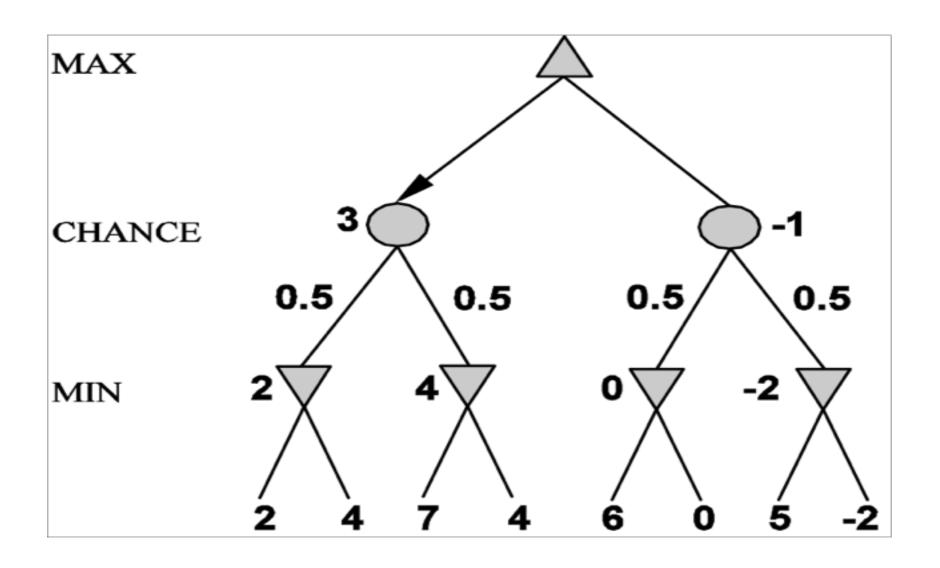
Stochastic Games



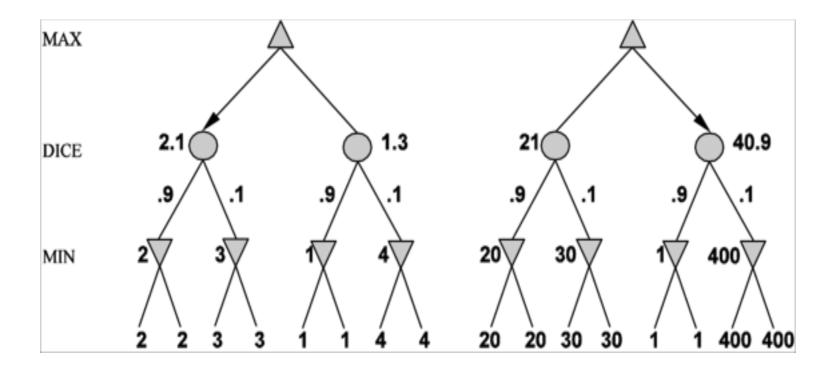
Stochastic Games

- Need to consider best/worst cases + probability they will occur
- Recall: Expected value of a random variable $x E[x]=\sum_{x \text{ in } X} P(x)x$
- Expectiminimax: minimax but at chance nodes compute the expected value

Expectiminimax



Expectiminimax



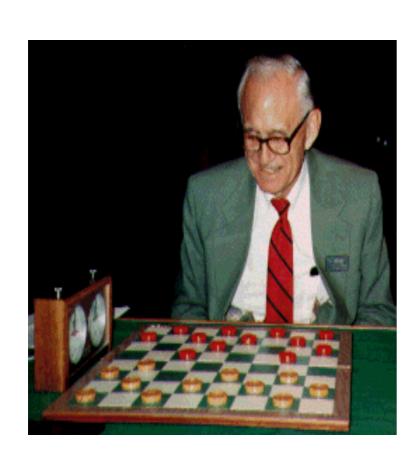
WARNING: exact values do matter! Order-preserving transformations of the evaluation function can change the choice of moves. Must have **positive linear transformations** only

Summary

- Games pose lots of fascinating challenges for Al researchers
- Minimax search allows us to play optimally against an optimal opponent
- Alpha-beta pruning allows us to reduce the search space
- A good evaluation function is key to doing well
- Games are fun!

Some Game Programs

Checkers

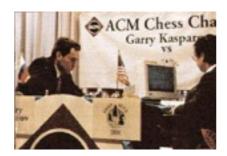


Mr. Tinsley suffered his 4th and 5th losses <u>ever</u> against Chinook

Checkers

- Chinook (University of Alberta)
 - World Man-Machine Checkers Champion
 - Alpha-beta search
 - Opening database
- Secret weapon: Endgame database
 - Perfect knowledge into the search
- Checkers is now dominated by computers
 - Checkers is (weakly) solved

Chess: Kasparov vs. Deep Blue



1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws

Kasparov		Deep Blue
5'10"	Height	6' 5"
176 lbs	Weight	2,400 lbs
34 years	Age	4 years
50 billion neurons	Computers	32 RISC processors
		+ 256 VLSI chess engines
2 pos/sec	Speed	200,000,000 pos/sec
Extensive	Knowledge	Primitive
Electrical/chemical	Power Source	Electrical
Enormous	Ego	None

Chess

Its secret:

- Specialized chess processor + special-purpose memory optimization
- Very sophisticated evaluation function
 - Expert features and hand-tuned weights
- Opening and closing books
- Alpha-beta + improvements (searching up to 40 ply deep)
- Searched over 200 million positions per second

Chess

- There are now apps that are on par with human champions
- Is Chess still a human game or have computers conquered it?

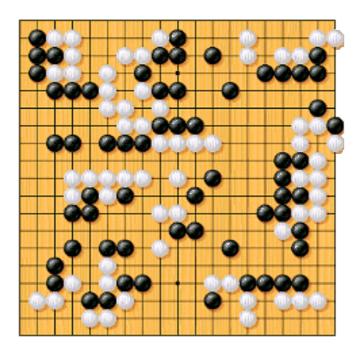


Backgammon

- TD-Gammon (Gerry Tesauro at IBM)
- One of the top players in the world
- Searches only two moves ahead!
- Its secret: One amazing evaluation function
 - Neural network trained with reinforcement learning during ~1 million games played against itself
 - Humans play backgammon differently now, based on what TD-Gammon learned about the game
 - Very cool AI ☺

Go

- Large branching factor makes Go too large to solve by classic search methods
 - pieces added to the board
 - evaluation function
 - •
- Limited progress for decades

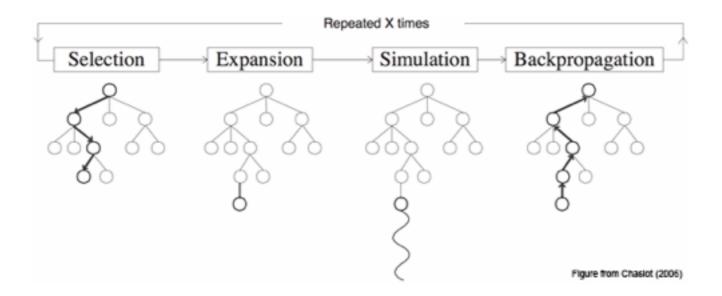


Go

- BUT computer Go has undergone a revolution in the past ~5 years
 - Close to perfection on 7x7 games
 - Reached top human level on 9x9 games
 - Still weaker than top humans on 19x9 boards

Go

- Monte-Carlo Tree Search (MCTS)
 - Build search tree according to outcomes of simulated plays



Upper Confidence Bounds for Trees (UCT): "Minimax search" using UCB

$$v_i + C\sqrt{\frac{\ln N}{n_i}}$$

Card Games

- Focus has been on Bridge and Poker
 - Humans are still winning...
 - But machines are catching up!
- Issues
 - Stochastic and partially observable
 - Ideas discussed today don't work well
 - New approaches are being developed