Constraint Satisfaction

CS 486/686: Introduction to Artificial Intelligence

Outline

- What are Constraint Satisfaction Problems (CSPs)?
- Standard Search and CSPs
- Improvements
 - Backtracking
 - Backtracking + heuristics
 - Forward Checking

Introduction

- We have been solving problems by searching in a space of states
 - Treating states as black boxes
- Today, we study problems where state structure is important

Queens Problem

- **States**: All arrangements of 0,1,..., or 8 queens
- Initial state: 0 queens on the board
- Successor function: Add a queen to the board
- **Goal Test**: 8 queens on the board with no two attacking each other

64x63x...53~3x10¹⁴ states

3					
				a aug	
	2000				
		104	NA.S		

Queens Problem

- States: All arrangements of k queens (0≤k≤8), one per column in the leftmost k columns, with no queen attacking another
- Initial state: 0 queens on the board
- Successor function: Add queen leftmost empty column such that it is not attacked
- Goal Test: 8 queens on the board

2057 states

s and					
				a aug	
	*				
	2000				
		101	VALA		

Place a queen in a square

Place a queen in a square

Place a queen in a square

Place a queen in a square

CSP Definition

- A constraint satisfaction problem (CSP) is defined by {V, D,C} where
 - $V = \{V_1, V_2, \dots, V_n\}$ is the set of **variables**
 - $D=\{D_1, D_2, \dots, D_n\}$ is the set of **domains**
 - $C=\{C_1, C_2, ..., C_m\}$ is the set of **constraints**

CSP Definition

- A state is an assignment of values to some (or all) variables
 - $\{V_i = x_i, V_j = x_j, ...\}$
- Consistent assignments
 - No violated constraints
- A solution is a complete, consistent assignment

Example: 8 Queens

- 64 variables V_{ij}, i=1..8, j=1..8
- Domain $D_{ij}=\{0,1\}$
- Constraints
 - $V_{ij}=1 \Rightarrow V_{ik}=0$ for $j \neq k$

Binary Constraints: Relate two variables

- $V_{ij}=1 \Rightarrow V_{kj}=0$ for $i \neq k$
- Similar constraints for diagonals
- ∑ijVij=8

Example: 8 Queens

- 8 variables, V_i i=1..8
- Domains D_i={1,2,...,8}
- Constraints
 - $V_i = k \Rightarrow V_j \neq k$ for all $j \neq i$
 - Similar constraints for diagonals

Example: Map Colouring

- 7 variables {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain {red, blue, green}
- No two adjacent variables have the same value

Example: 3 Sat

- n Boolean variables V₁,...,V_n
- K constraints of the form $V_i^* \lor V_j^* \lor V_k^*$ where V_i^* is either V_i or $\sim V_i$
- NP-Complete

Variable Types of CSPs

- Discrete and finite
- Discrete variables with infinite domains
 - Constraint languages
- Continuous domains
 - Linear programming etc

Types of Constraints

- Unary
 - restricts a variable to a single value
- Binary
 - Constraint graph
- Higher order constraints involve three or more variables
 - Constraint hypergraphs

CSPs and Search

- n variables V₁,...,V_n
- Valid assignment: {V₁=x₁,...,V_k=x_k} for 0≤k≤n such that values satisfy constraints
- States: valid assignments
- Initial state: empty assignment
- Successor: $\{V_1 = x_1, ..., V_k = x_k\} \rightarrow \{V_1 = x_1, ..., V_k = x_k, V_{k+1} = x_{k+1}\}$
- Goal test: complete assignment
 - If all domains have size d then there are O(dⁿ) complete assignments

Communtativity

- CSPs are commutative
- Order of actions taken does not effect outcome
 - Can assign values to variables in any order
- CSP algorithms take advantage of this
 - Consider possible assignments for a single variable at each node in search tree

Backtracking Search

- Select unassigned variable X
- For each value $\{x_1, \dots, x_n\}$ in domain of X
 - If value satisfies constraints, assign X=x_i and exit loop
- If an assignment is found
 - Move to next variable
- If no assignment found
 - Back up to preceding variable and try a different assignment for it

Backtracking and Efficiency

- Backtracking search = uninformed search method
 - Not very efficient
- Can we do better? Heuristics!
 - Which variable should be assigned next?
 - In which order should its values be tried?
 - Can we detect inevitable failure early?

Most Constrained Variable

- Choose the variable which has the fewest "legal" moves
 - AKA minimum remaining values (MRV)

Most Constraining Variable

- Most constraining variable:
 - Choose variable with most constraints on remaining variables
- Tie-breaker among most constrained variables

Least-Constraining Value

- Given a variable, choose the least constraining value:
 - The one that rules out the fewest values in the remaining variables

Forward Checking

- Is there a way to detect failure early?
- Forward checking:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

WA	NT	Q	NSW	V	SA	Т
RGB						

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	RGB	RGB	RGB	RGB	RGB	RGB
				Luc Dad	(NIT and	

Forward checking removes the value Red of NT and of SA

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	GB	G	RGB	RGB	GB	RGB

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	B	RGB
R	В	G	RB	В	В	RGB

Empty set: the current assignment $\{(WA \in R), (Q \in G), (V \in B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	B	RGB
R	В	G	RB	В	В	RGB

Arc Consistency

- Arc Consistency
 - Fast method of constraint propagation
 - Stronger than forward checking

Iterative Improvement Algorithms

- Start with a broken but complete assignment of values to variables
 - Allow states to have variable assignments that do not satisfy constraints
- Randomly select conflicted variables
- Operators reassign values
 - Min-conflict heuristic: choose value that violates fewest constraints

Example: 4 Queens

Given random initial state, can solve n-queens problem in almost constant time for arbitrary n with high probability (e.g. n=10⁷)

Appears to be true for any randomly-generated CSP except in narrow range of ratio:

R=(number constraints)/(number variables)

Summary

- How to formalize problems as CSPs
- Backtracking search
- Heuristics
 - variable ordering
 - value ordering
 - forward checking
 - arc consistency
- Iterative Improvement approaches