
Local Search

CS 486/686: Introduction to Artificial Intelligence
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Overview
• Uninformed Search

- Very general: assumes no knowledge about the problem

- BFS, DFS, IDS

• Informed Search

- Heuristics

- A* search and variations

• Search and Optimization

- What are the problem features?

- Iterative improvement: hill climbing, simulated annealing

- Genetic algorithms
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Introduction

• Both uninformed and informed search 
systematically explore the search space

- Keep 1 or more paths in memory

- Solution is a path to the goal

• For many problems, the path is 
unimportant
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Examples

AV ~B V C

~A V C V D

B V D V ~E

~C V ~D V ~E

…
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Informal Characterization

• Combinatorial structure being optimized

• Constraints have to be satisfied

• There is a cost function

- We want to find a good solution

• Search all possible states is infeasible

- Often easy to find some solution to the problem

- Often provably hard (NP-complete) to find the best 
solution
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Typical Example: TSP

• Goal is to minimize the length 
of the route

• Constructive method: Start 
from scratch and build up a 
solution

• Iterative improvement 
method: Start with solution 
(may be suboptimal or broken) 
and improve it
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Constructive Methods

• For the optimal solution we can use A*

• But...

• We do not need to know how we got 
the solution

- We just want the solution
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Iterative Improvement Methods

• Idea: Imagine all possible solutions laid out on 
a landscape

- Goal: find the highest (or lowest) point

8



Iterative Improvement Methods

• Start at some random 
point

• Generate all possible 
points to move to

• If the set is not empty, 
choose a point and move 
to it

• If you are stuck (set is 
empty), then restart
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Iterative Improvement Methods

• What does it mean to “generate points to move to”

- Generating the moveset

• Depends on the application

TSP

2-swap
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Hill Climbing (Gradient Descent)

• Main idea

- Always take a step in the direction that improves 
the current solution value the most

• Variation of best-first search

• Very popular for learning algorithms

“…like trying to find the top of Mt Everest in a thick fog while 
suffering from amnesia”, Russell and Norvig
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Hill Climbing
1.Start with some initial configuration S
2.Let V be the value of S
3.Let Si, i=1,...,n be neighbouring configs, Vi are 

corresponding values
4.Let Vmax=maxi Vi be value of best config and 

Smax is the corresponding config

• If Vmax<V return S (local optimium)

• Let S←Smax and V←Vmax. Go to 3
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Judging Hill Climbing

• Good news

- Easy to program

- Requires no memory of where we have 
been

- Important to have a “good” set of moves
- Not too many, not too few
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Judging Hill Climbing
• Bad news

- It can get stuck

- Local maxima/minima

- Plateaus
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Improving Hill Climbing

• Plateaus

- Allow for sideways moves
- But be careful since might move sideways forever

• Local Maxima

- Random restarts: If at first you do not 
succeed, try, try again!
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Randomized Hill Climbing

• Like hill climbing except

- You choose a random state from the move 
set

- Move to it if it is better than current state

- Continue until you are bored
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More Randomization
• Hill climbing is incomplete

- can get stuck at local optima

• A random walk is complete

- but very inefficient

• New Idea:

- Allow the algorithm to make some “bad” 
moves in order to escape local optima
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Example: GSAT
 AV~BVC  1

~AVCVD  1
 BVDV~E  0
~CV~DV~E  1
~AV~CVE  1

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied 
clauses: Eval(config)=# satisfied clauses

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

 If any improve Eval, then accept the best

 If none improve Eval, then  with prob p  pick the 
 move that is least bad; prob (1-p) pick a random 
 one

GSAT Move_Set: Flip any 1 variable

18



Simulated Annealing
1.S is initial config and V=Eval(S)
2.Let i be a random move from the 

moveset and let Si be the next config, 
Vi=Eval(Si)

3.If V<Vi, then S=Si and V=Vi

4.Else with probability p, S=Si and V=Vi

5.Go to 2 until you are bored
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What About p?

• How should we choose the probability 
of making a “bad” move?

- p=0.1 (or some fixed value)?

- Decrease p with time?

- Decrease p with time and as V-Vi increases?

- ...
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Selecting Moves in Simulated 
Annealing

• If new value Vi is better than old value V then 
definitely move to new solution

• If new value Vi is worse than old value V then 
move to new solution with probability

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and 
decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is 
almost 0.
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Properties to Simulated 
Annealing

• When T is high:

- Exploratory phase: even bad moveshave a chance of 
being picked (random walk)

• When T is low:

- Exploitation phase: “bad” moves have low probability 
of being chosen (randomized hill climbing)

• If T is decreased slowly enough then simulated 
annealing is guaranteed to reach optimal solution
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Genetic Algorithms
• Populations are encoded into a representation which allows certain 

operations to occur
- Usually a bitstring

- Representation is key - needs to be thought out carefully

• An encoded candidate solution is an individual

• Each individual has a fitness
- Numerical value associated with its quality of solution

• A population is a set of individuals

• Populations change over generations by applying operators to 
them
- Operations: selection, mutation, crossover
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Typical Genetic Algorithm

• Initialize: Population P←N random individuals

• Evaluate: For each x in P, compute fitness(x)

• Loop

- For i=1 to N 
- Select 2 parents each with probability proportional to fitness scores

- Crossover the 2 parents to prodice a new bitstring (child)

- With some small probability mutate child

- Add child to population

- Until some child is fit enough or you get bored

• Return best child in the population according to fitness 
function
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Selection
• Fitness proportionate selection:

- Can lead to overcrowding

• Tournament selection

- Pick i, j at random with uniform probability

- With probability p select fitter one

• Rank selection

- Sort all by fitness

- Probability of selection is proportional to rank

• Softmax (Boltzmann) selection:
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Crossover

• Combine parts of individuals to create new ones

• For each pair, choose a random crossover point

- Cut the individuals there and swap the pieces

101|0101                 011|1110

Cross over

011|0101                 101|1110

Implementation: use a crossover mask m

Given two parents a and b the offspring are

 (a^m)V(b^~m) and (a^~m)V (b^m)

26



Mutation

• Mutation generates new features that 
are not present in original population

• Typically means flipping a bit in the 
string

• Can allow mutation in all individuals or 
just in new offspring

100111 mutates to 100101
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Example
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Summary
• Useful for optimization problems

• Often the second-best way to solve a problem

- If you can, use A* or linear programming or ...

• Need to think about how to escape from local 
optima

- Random restarts

- Allowing for bad moves

- ...
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