Local Search

CS 486/686: Introduction to Artificial Intelligence
Overview

• Uninformed Search
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS

• Informed Search
 - Heuristics
 - A* search and variations

• Search and Optimization
 - What are the problem features?
 - Iterative improvement: hill climbing, simulated annealing
 - Genetic algorithms
Introduction

• Both uninformed and informed search systematically explore the search space
 - Keep 1 or more paths in memory
 - Solution is a path to the goal

• For many problems, the path is unimportant
Examples

AV ~B V C
~A V C V D
B V D V ~E
~C V ~D V ~E
...

Agents = dispatch centers
Informal Characterization

• Combinatorial structure being optimized
• Constraints have to be satisfied
• There is a cost function
 - We want to find a good solution
• Search all possible states is infeasible
 - Often easy to find some solution to the problem
 - Often provably hard (NP-complete) to find the best solution
Typical Example: TSP

- Goal is to minimize the length of the route
- **Constructive method**: Start from scratch and build up a solution
- **Iterative improvement method**: Start with solution (may be suboptimal or broken) and improve it
Constructive Methods

• For the optimal solution we can use A*
• But...
• We do not need to know how we got the solution
 - We just want the solution
Iterative Improvement Methods

- Idea: Imagine all possible solutions laid out on a landscape
 - Goal: find the highest (or lowest) point
Iterative Improvement Methods

- Start at some random point
- Generate all possible points to move to
- If the set is not empty, choose a point and move to it
- If you are stuck (set is empty), then restart
Iterative Improvement Methods

• What does it mean to “generate points to move to”
 - Generating the moveset

• Depends on the application

TSP

2-swap
Hill Climbing (Gradient Descent)

- Main idea
 - Always take a step in the direction that improves the current solution value the most
- Variation of best-first search
- Very popular for learning algorithms

“...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia”, Russell and Norvig
Hill Climbing

1. Start with some initial configuration S
2. Let V be the value of S
3. Let S_i, $i=1,...,n$ be neighbouring configs, V_i are corresponding values
4. Let $V_{\text{max}}=\max_i V_i$ be value of best config and S_{max} is the corresponding config
 - If $V_{\text{max}}<V$ return S (local optimum)
 - Let $S \leftarrow S_{\text{max}}$ and $V \leftarrow V_{\text{max}}$. Go to 3
Judging Hill Climbing

• Good news
 - Easy to program
 - Requires no memory of where we have been
 - Important to have a “good” set of moves
 - Not too many, not too few
Judging Hill Climbing

- Bad news
 - It can get stuck
 - Local maxima/minima
 - Plateaus
Improving Hill Climbing

- Plateaus
 - Allow for sideways moves
 - But be careful since might move sideways forever

- Local Maxima
 - Random restarts: *If at first you do not succeed, try, try again!*
Randomized Hill Climbing

- Like hill climbing except
 - You choose a random state from the move set
 - Move to it if it is better than current state
 - Continue until you are bored
More Randomization

• Hill climbing is incomplete
 - can get stuck at local optima

• A random walk is complete
 - but very inefficient

• New Idea:
 - Allow the algorithm to make some “bad” moves in order to escape local optima
Example: GSAT

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AV~BVC</td>
<td>1</td>
<td>~AVCVD</td>
<td>1</td>
<td>BVDV~E</td>
</tr>
<tr>
<td>CVDV~E</td>
<td>1</td>
<td>AVCVE</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Configuration $A=1$, $B=0$, $C=1$, $D=0$, $E=1$

Goal is to maximize the number of satisfied clauses: $\text{Eval(config)} = \# \text{ satisfied clauses}$

GSAT Move Set: Flip any 1 variable

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

- If any improve Eval, then accept the best
- If none improve Eval, then with prob p pick the move that is least bad; prob $(1-p)$ pick a random one
Simulated Annealing

1. S is initial config and V = Eval(S)
2. Let i be a random move from the moveset and let S_i be the next config, $V_i = \text{Eval}(S_i)$
3. If $V < V_i$, then $S = S_i$ and $V = V_i$
4. Else with probability p, $S = S_i$ and $V = V_i$
5. Go to 2 until you are bored
What About p?

• How should we choose the probability of making a “bad” move?
 - $p=0.1$ (or some fixed value)?
 - Decrease p with time?
 - Decrease p with time and as $V-V_i$ increases?
 - ...
Selecting Moves in Simulated Annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with probability

$$e^{- (V - V_i)/T}$$

Boltzmann Distribution: $T > 0$ is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is almost 0.
Properties to Simulated Annealing

- When T is high:
 - **Exploratory phase**: even bad moves have a chance of being picked (random walk)

- When T is low:
 - **Exploitation phase**: “bad” moves have low probability of being chosen (randomized hill climbing)

- If T is decreased slowly enough then simulated annealing is guaranteed to reach optimal solution
Genetic Algorithms

- Populations are encoded into a representation which allows certain operations to occur
 - Usually a bitstring
 - Representation is key - needs to be thought out carefully
- An encoded candidate solution is an individual
- Each individual has a fitness
 - Numerical value associated with its quality of solution
- A population is a set of individuals
- Populations change over generations by applying operators to them
 - Operations: selection, mutation, crossover
Typical Genetic Algorithm

- Initialize: Population $P \leftarrow N$ random individuals
- Evaluate: For each x in P, compute $\text{fitness}(x)$
- Loop
 - For $i=1$ to N
 - Select 2 parents each with probability proportional to fitness scores
 - Crossover the 2 parents to produce a new bitstring (child)
 - With some small probability mutate child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function
Selection

- Fitness proportionate selection: $P(i) = \frac{\text{fitness}(i)}{\sum_j \text{fitness}(j)}$
 - Can lead to overcrowding

- Tournament selection
 - Pick i, j at random with uniform probability
 - With probability p select fitter one

- Rank selection
 - Sort all by fitness
 - Probability of selection is proportional to rank

- Softmax (Boltzmann) selection: $P(i) = \frac{e^{\text{fitness}(i)/T}}{\sum_j e^{\text{fitness}(j)/T}}$
Crossover

• Combine parts of individuals to create new ones
• For each pair, choose a random crossover point
 – Cut the individuals there and swap the pieces

\[
\begin{array}{c|c}
101 & 0101 \\
\hline
011 & 1110 \\
\end{array}
\]

Cross over

\[
\begin{array}{c|c}
011 & 0101 \\
\hline
101 & 1110 \\
\end{array}
\]

Implementation: use a crossover mask m

Given two parents a and b the offspring are

\((a \wedge m) \vee (b \wedge \neg m)\) and \((a \wedge \neg m) \vee (b \wedge m)\)
Mutation

• Mutation generates new features that are not present in original population.

• Typically means flipping a bit in the string.

 100111 mutates to 100101

• Can allow mutation in all individuals or just in new offspring.
Example
Summary

• Useful for optimization problems
• Often the second-best way to solve a problem
 - If you can, use A* or linear programming or ...
• Need to think about how to escape from local optima
 - Random restarts
 - Allowing for bad moves
 - ...