Informed Search

CS 486/686: Introduction to Artificial Intelligence
Outline

• Using knowledge
 - Heuristics

• Best-first search
 - Greedy best-first search
 - A* search
 - Variations of A*

• Back to heuristics
Last lecture

- Uninformed search uses no knowledge about the problem
 - Expands nodes based on “distance” from start node (never looks ahead to goal)

- Pros
 - Very general

- Cons
 - Very expensive

- Non-judgemental
 - Some are complete, some are not
Informed Search

• We often have additional **knowledge** about the problem
 - Knowledge is often **merit of a node** (value of a node)
 - Example: Romania travel problem?

• Different notions of merit
 - **Cost of solution**
 - Minimizing computation
Informed Search

• Uninformed search expands nodes based on distance from start node, \(d(n_{\text{start}}, n)\)

• Why not expand on distance to goal, \(d(n, n_{\text{goal}})\)?

• What if we do not know \(d(n, n_{\text{goal}})\) exactly?

 – Heuristic function, \(h(n)\)
Example: Path Planning

- Romania example
 - What is a reasonable heuristic?
 - Is it always right?
Heuristics

• If \(h(n_1) < h(n_2) \)
 - We guess it is cheaper to reach the goal from \(n_1 \) than \(n_2 \)

• We require \(h(n_{\text{goal}}) = 0 \)

• For now, just assume we have some heuristic \(h(n) \)
(Greedy) Best-First Search

- Expand the most promising node according to the heuristic
- Best-first is similar to DFS (how similar depends on the heuristics)
- If $h(n)=0$ for all n, best-first search is the same as BFS
Example: Best First search

- $h=4$
- $h=3$
- $h=2$
- $h=1$
- $h=0$

- Path Cost
- Heuristic Function

Diagram:

- S → A (Cost 2)
- A → B (Cost 1)
- B → C (Cost 1)
- C → G (Cost 2)

Cost Path: S → A → B → C → G

Total Cost: 2 + 1 + 1 + 2 = 6
Example: Best First Search

- S to A: h=4, cost=2
- A to B: h=2, cost=1
- B to G: h=2.5, cost=2
- C to A: h=1, cost=1
- C to G: h=0, cost=1
Judging Best First Search

• Good news
 - Informed search method

• Bad news
 - Not optimal
 - Not complete: but OK if we check repeated states
 - Exponential space: might need to keep all nodes in memory
 - Exponential time (O(b^m))
 - but if we choose a good heuristic then we can do much better! (See Good news)
A* Search

• Best-first search is too greedy

• Solution?
 - Let g be the cost of the path so far
 - Let h be a heuristic function
 - Let $f(n) = g(n) + h(n)$
 - estimate of cost of current path

• A* search
 - Expand node in fringe with lowest f-value
A* Search

• Algorithm
 - At every step, expand node n from front of the queue
 - Enqueue the successor n’ with priorities
 \[f(n’) = g(n’) + h(n’) \]
 - Terminate when goal state is popped from the queue
Example: A* search
When Should A* Terminate?

• Only when G has been popped from the queue
A* and Revisiting States

- What if we revisit a state that was already expanded?
Is A* Optimal?

\[h = 6 \]
Admissible Heuristics

• Let $h^*(n)$ be the shortest path from n to any goal state

• A heuristic is \textit{admissible} if $h(n) \leq h^*(n)$ for all n

• Admissible heuristics are optimistic

• Always have $h(n_{\text{goal}}) = 0$ for any admissible heuristic
Optimality of A*

- If the heuristic is admissible then A* with tree-search is optimal

Proof by contradiction
Let goal G_2 be in the queue. Let n be an unexpanded node on the shortest path to optimal goal G.
Assume that A* chose G_2 to expand. Thus, it must be that $f(n) > f(G_2)$

But
$f(G_2) = g(G_2)$ since $h(G_2) = 0$
$\geq g(G)$ since G_2 is suboptimal
$\geq f(n)$ since h is admissible

Contradiction. Therefore, A* will never select G_2 for expansion.
Optimality of A*

• For graphs we require consistency
 - $h(n) \leq \text{cost}(n, n') + h(n')$
 - Almost any admissible heuristic function will also be consistent

• A* search on graphs with a consistent heuristic is optimal
Judging A*

• Good news
 - Complete
 - Optimal (if heuristic is admissible)
 - Time complexity: Exponential in worst case but a good heuristic helps a lot

• Bad news
 - A* keeps all generated nodes in memory
 - On many problems A* runs out of memory
Memory-Bounded Heuristic Search

• Iterative Deepening A* (IDA*)
 - Basically depth-first search but using the f-value to decide which order to consider nodes
 - Use f-limit instead of depth limit
 - New f-limit is the smallest f-value of any node that exceeded cutoff on previous iteration
 - Additionally keep track of next limit to consider
 - IDA* has same properties as A* but uses less memory
Memory-Bounded Heuristic Search

- Simplified Memory-Bounded A* (SMA*)
 - Uses all available memory
 - Proceeds like A* but when it runs out of memory it drops the worst leaf node (one with highest f-value)
 - If all leaf nodes have same f-value, drop oldest and expand newest
 - Optimal and complete if depth of shallowest goal node is less than memory size
Heuristic Functions

• A good heuristic function can make all the difference!

• How do we get heuristics?
8 Puzzle

- Relax the game
 1. Can move from A to B is A is next to B
 2. Can move from A to B if B is blank
 3. Can move from A to B
8 Puzzle

- 3 leads to misplaced tile heuristic
 - Number of moves = number of misplaced tiles
 - Admissible

- 1 leads to Manhattan distance heuristic
 - Admissible
8 Puzzle

- h_1 = misplaced tiles, h_2 = Manhatten distance

- Note: h_2 dominates h_1
 - $h_2(n) \geq h_1(n)$ for all n
 - Even though both h_1 and h_2 are admissible heuristics, h_2 is a better heuristic
8 Puzzle and Heuristics

<table>
<thead>
<tr>
<th>Depth</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>
Designing Heuristics

- Relax the problem
- Precompute solution costs of subproblems and storing them in a pattern database
- Learning from experience with the problem class
- ...
Summary

• What you should know
 - Thoroughly understand A*
 - Be able to trace simple examples of A* execution
 - Understand admissibility of heuristics
 - Completeness, optimality