Introduction

CS 486/686: Introduction to Artificial Intelligence Winter 2015

Outline

- Course administration
- What is AI? (Chapter 1)
 - Definitions
 - History
 - What we will cover
- Rational Agents (Chapter 2)

Course Administration

- CS 486/686: Introduction to Artificial Intelligence
 - Section 1: PHY 313 Tues/Thurs 11:30-12:50
 - Section 2: PHY 313 Tues/Thurs 08:30-09:50
- Course Personnel:
 - Kate Larson (<u>klarson@uwaterloo.ca</u>)
 - Office Hours: Tuesdays 1:30-2:30 in DC 2518
 - John Doucette (<u>j3doucet@uwaterloo.ca</u>)
 - Office Hours: Thursdays 10:15-11:15 in DC 2580
 - TAs: Hadi Hosseini, Milad Khaki, Nam Pham, Daniel Recoskie,
 Chi Zhang

Course Administration

• Website:

http://www.cs.uwaterloo.ca/~klarson/teaching/W15-486

Newsgroup:

 We will be using Piazza for the newsgroup. Details on how to sign up are in the syllabus.

• Texts:

- Artificial Intelligence: A Modern Approach by S. Russell and P. Norvig (3rd Edition)
- Artificial Intelligence: Foundations of Computational Agents, D.
 Poole and A. Mackworth (available online)

Evaluation

CS 486

CS 686

- 6 Assignments: 60%
- Final: 40%
- Project (Optional): up to 5 bonus marks

• 6 Assignments: 40%

• Final: 35%

Project: 25%

Assignment Late Policy

- Assignments are due as announced
 - For each assignment, you can pass it in up to 48 hours late
 - No doctor's note required, etc

BUT


- No assignment will be accepted after the 48 hour grace period
- No questions about the assignment will be answered during the 48 hour period

Outline

- Course administration
- What is AI? (Chapter 1)
 - Definitions
 - History
 - What we will cover
- Rational Agents (Chapter 2)

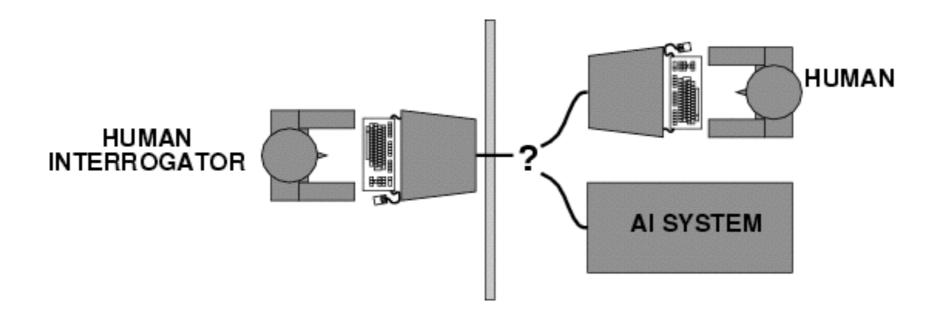
What is Al?

- According to media/ popular perception
 - What socially-inept hackers do
 - Hal, Data, Sonny
 - "When Robots Attack"
 - ...

What is AI?

- Definition of AI differ along two dimensions
 - Reasoning vs behaviour
 - Fidelity to human behaviour vs rationality

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally


What are the Goals of AI?

- Al is about duplicating what the (human) brain **DOES**
 - Turing Test

- Al is about duplicating what the human brain SHOULD DO
 - Rationality

Behaving Like a Human

 Alan Turing (1950) "Computing machinery and intelligence"

Computing Machinery and Intelligence

- Predicted that by 2000 a computer would have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against Al
- Suggested major components of AI:
 - Knowledge, Reasoning, Language Understanding, Learning

The Turing Test

- The test is still relevant today
 - The Loebner Prize
- However, AI researchers spend limited effort on it
 - It is not reproducible or amenable to mathematical analysis
 - More important to understand underlying principles of intelligence than copy them?

What are the Goals of AI?

- Al is about duplicating what the (human) brain **DOES**
 - Turing Test

- All is about duplicating what the human brain SHOULD DO
 - Rationality

Rational Behaviour

- Rational behaviour
 Doing the Right Thing
- Doing what is expected to maximize goal achievement, given available information
 - Does not necessarily require thinking
 - But often thinking serves rational behaviour

Abridged History of Al

- 1943: McCulloch & Pitts: Boolean circuit of the brain
- 1950: Turing's "Computing machinery and intelligence"
- 1950s: Early AI Programs including Samuel's checkers, Newell and Simon's Logic Theorist
- 1956: Dartmouth meeting: "Artificial Intelligence"
- 1966-1973: Problems with scaleability, Perceptron paper
- 1970s: Knowledge-based systems

"The Al Winter"

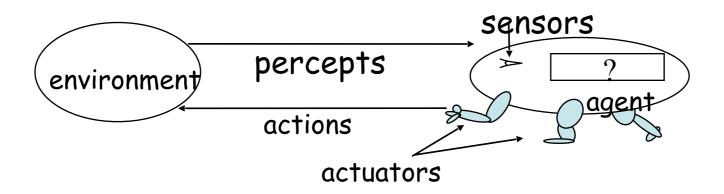
- 1980's: Expert-systems industry
- 1988-now: Probabilistic and decision theoretic methods

Classical Al

- Reasoning was seen as THE AI problem
 - Chess was considered pivotal to understanding intelligence

Goal: General Problem Solver

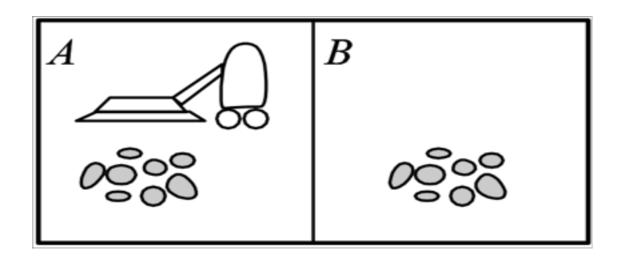
Recent Al


- Focus on solving specific problems
- Heavy use of probability theory, decision theory, statistics,...
- Collection of subfields
 - Perception (including vision) is usually separate
 - Robotics is mostly separate
 - Deliberative reasoning is "AI"
 - But lots of different approaches

Course Contents

- Search
- Knowledge Representation and Reasoning
- Planning
- Reasoning Under Uncertainty
- Learning

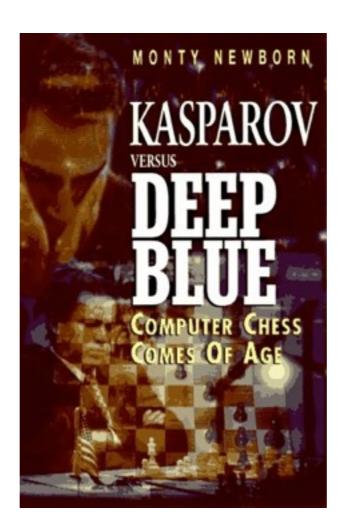
Rational Agents


- An entity that perceives and acts
 - Function from percept to actions f:P→A
- Performance measures
 - Goal achievement, resource consumption,...
- Caveat: Computational limitations and environmental constraints mean we do not have perfect rationality

Task Environment

- To design a rational agent, the task environment must be specified
 - Performance measure
 - Environment
 - Actuators
 - Sensors

Performance Measures


- Percepts: [Location, Dirty or Clean]
- Actions: Right, Left, Vacuum, NoOp, Dump
- Function: ([A,Clean],Right), ([A, Dirty], Vacuum), ([B, Dirty], Vacuum), ([B, Clean], Left)...

Properties of Task Environment

- Fully Observable vs Partially Observable
- Deterministic vs Stochastic
- Episodic vs Dynamic
- Discrete vs Continuous
- Single agent vs Multi agent

Chess was <u>THE</u> Al challenge for decades

I could feel – I could smell – a new kind of intelligence across the table"
-Gary Kasparov

"Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap its wings."

DrewMcDermott

• Checkers?

Poker?

Jeopardy?

Airport Security?

Autonomous Vehicles?

Real Time Translation?

• Journalism?

Questions?

 Next lecture: Problem Solving Agents (Chapter 3)