#### Mechanism Design

Kate Larso

#### introduction

Fundamenta

#### Mechanisn

Mechanism Design

Direct Mechanism

Revelation Princip

Gibbard-

Satterthwaite

Preferences

Quasi-Linea

Groves Mechanism

## Mechanism Design

Kate Larson

University of Waterloo

January 16, 2013

## Outline

#### Mechanism Design

Kate Larsor

Introductio Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked

Introduction

- Introduction
- Fundamentals
- 2 Mechanisms
  - Mechanism Design Problem
  - Direct Mechanisms
  - Revelation Principle
  - Gibbard-Satterthwaite
  - Single-Peaked Preferences
  - Quasi-Linear Preferences
  - Groves Mechanisms

## Introduction

#### Mechanism Design

Kate Larsor

Introduction

Introduction

Mechanism

Mechanism Design Problem Direct Mechanisms Revelation Principle Gibbard-

Satterthwaite
Single-Peaked
Preferences
Quasi-Linear
Preferences
Groves Mechanis

## **Game Theory**

 Given a game we are able to analyse the strategies agents will follow

### **Social Choice**

 Given a set of agents' preferences we can choose some outcome

## Introduction

#### Mechanism Design

Kate Larson

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences

### Today Mechanism Design

- Game Theory + Social Choice
- Goal of Mechanism Design is to
  - Obtain some outcome (function of agents' preferences)
  - But agents are rational
    - They may lie about their preferences

### Goal

Define the rules of a game so that in equilibrium the agents do what we want.

## **Fundamentals**

#### Mechanism Design

Kate Larso

Introduction Introduction Fundamentals

Mechanism Design Problem Direct Mechanisms Revelation Principle Gibbard-Satterthwaite Single-Peaked Preferences

- Set of possible outcomes O
- Set of agents N, |N| = n
  - Each agent *i* has type  $\theta_i \in \Theta_i$
  - Type captures all private information that is relevent to the agent's decision making
- Utility  $u_i(o, \theta_i)$  over outcome  $o \in O$
- Recall: goal is to implement some system wide solution
  - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

where  $f(\theta_1, \dots, \theta_n) = o$  is a collective choice

# **Examples of Social Choice Functions**

#### Mechanism Design

Kate Larso

Introduction

Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite

Revelation Principle Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanisms

### Voting:

Choose a candidate among a group

## • Public project:

 Decide whether to build a swimming pool whose cost must be funded by the agents themselves

### • Allocation:

Allocate a single, indivisible item to one agent in a group

## **Mechanisms**

#### Mechanism Design

Fundamentals

Recall that we want to implement a social choice function

- Need to know agents' preferences
- They may not reveal them to us truthfully Example:









# Mechanism Design Problem

#### Mechanism Design

Kate Larso

## Introduction Introduction

Fundamentals

# Mechanism Design

Problem
Direct Mechanisms
Revelation Principle
Gibbard-

Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear Preferences  By having agents interact through an institution we might be able to solve the problem

Mechanism:

$$M = (S_1, \ldots, S_n, g(\cdot))$$

### where

- S<sub>i</sub> is the strategy space of agent i
- $g: S_1 \times ... \times S_n \rightarrow O$  is the outcome function

Definition

#### Mechanism Design

Kate Larsor

Introduction Introduction Fundamental

Mechanism Design Problem Direct Mechanisms

Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences
Quasi-Linear

A mechanism  $M = (S_1, \dots, S_n, g(\cdot))$  implements social choice function  $f(\Theta)$  if there is an equilibrium strategy profile

$$s^* = (s_1^*(\theta_1, \dots, s_n^*(\theta_n))$$

of the game induced by M such that

$$g(s_1^*(\theta_1),\ldots,s_n^*(\theta_n))=f(\theta_1,\ldots,\theta_n)$$

for all

$$(\theta_1,\ldots,\theta_n)\in\Theta_1\times\ldots\times\Theta_n$$

#### Mechanism Design

Kate Larson

#### Introduction

Introduction

#### Mechanism

Mechanism Design Problem

Direct Mechanism

Gibbard-

Single-Peak

Quasi-Linear

Groves Mechanis

## We did not specify the type of equilibrium in the definition

Nash

$$\textit{u}_{\textit{i}}(\textit{g}(\textit{s}^*_{\textit{i}}(\theta_{\textit{i}}), \textit{s}^*_{-\textit{i}}(\theta_{-\textit{i}})), \theta_{\textit{i}}) \geq \textit{u}_{\textit{i}}(\textit{g}(\textit{s}'_{\textit{i}}(\theta_{\textit{i}}), \textit{s}^*_{-\textit{i}}(\theta_{-\textit{i}})), \theta_{\textit{i}})$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \ge u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_{-i}$$



#### Mechanism Design

Kate Larson

Introduction

Introduction

#### Mechanisn

Mechanism Design Problem Direct Mechanisms

Revelation Principle Gibbard-Satterthwaite

Single-Peaked Preferences Quasi-Linear Preferences We did not specify the type of equilibrium in the definition

Nash

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \ge u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_{-i}$$



#### Mechanism Design

Kate Larson

Introduction

Fundamentals

#### Mechanisn

Mechanism Design Problem Direct Mechanisms Revelation Principle Gibbard-

Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences
Quasi-Linear

We did not specify the type of equilibrium in the definition

Nash

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_{-i}$$



# Properties for Mechanisms

#### Mechanism Design

Kate Larsor

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite

Efficiency

Select the outcome that maximizes total utility

- Fairness
  - Select outcome that minimizes the variance in utility
- Revenue maximization
  - Select outcome that maximizes revenue to a seller (or, utility to one of the agents)
- Budget-balanced
  - Implement outcomes that have balanced transfers across agents
- Pareto Optimal
  - Only implement outcomes  $o^*$  for which for all  $o' \neq o^*$  either  $u_i(o', \theta_i) = u_i(o^*, \theta_i) \forall i$  or  $\exists i \in N$  with  $u_i(o', \theta_i) < u_i(o^*, \theta_i)$

#### Mechanism Design

Kate Larsor

ntroduction Introduction Fundamentals

## Mechanisms Mechanism Design

Problem

Direct Mechanisms

Revelation Principle

Revelation Principle
GibbardSatterthwaite

Single-Peaked Preferences Quasi-Linear Preferences We can not force agents to participate in the mechanism. Let  $\hat{u}_i(\theta_i)$  denote the (expected) utility to agent i with type  $\theta_i$  of its outside option.

 ex ante individual-rationality: agents choose to participate before they know their own type

$$E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$$

 interim individual-rationality: agents can withdraw once they know their own type

$$E_{\theta_{-i} \in \Theta_{-i}}[u_i(f(\theta_i, \theta_{-i}), \theta_i)] \ge \hat{u}_i(\theta_i)$$

$$u_i(f(\theta), \theta_i) \geq \hat{u}_i(\theta_i)$$



#### Mechanism Design

Kate Larsor

ntroduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
Gibbard-

Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences
Quasi-Linear
Preferences
Groves Mechanisms

We can not force agents to participate in the mechanism. Let  $\hat{u}_i(\theta_i)$  denote the (expected) utility to agent i with type  $\theta_i$  of its outside option.

 ex ante individual-rationality: agents choose to participate before they know their own type

$$E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$$

 interim individual-rationality: agents can withdraw once they know their own type

$$E_{\theta_{-i} \in \Theta_{-i}}[u_i(f(\theta_i, \theta_{-i}), \theta_i)] \ge \hat{u}_i(\theta_i)$$

$$u_i(f(\theta), \theta_i) \geq \hat{u}_i(\theta_i)$$



#### Mechanism Design

Kate Larsor

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked
Proferences

We can not force agents to participate in the mechanism. Let  $\hat{u}_i(\theta_i)$  denote the (expected) utility to agent i with type  $\theta_i$  of its outside option.

 ex ante individual-rationality: agents choose to participate before they know their own type

$$E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$$

 interim individual-rationality: agents can withdraw once they know their own type

$$E_{\theta_{-i} \in \Theta_{-i}}[u_i(f(\theta_i, \theta_{-i}), \theta_i)] \ge \hat{u}_i(\theta_i)$$

$$u_i(f(\theta), \theta_i) \geq \hat{u}_i(\theta_i)$$

#### Mechanism Design

Kate Larsor

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked

We can not force agents to participate in the mechanism. Let  $\hat{u}_i(\theta_i)$  denote the (expected) utility to agent i with type  $\theta_i$  of its outside option.

 ex ante individual-rationality: agents choose to participate before they know their own type

$$E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$$

 interim individual-rationality: agents can withdraw once they know their own type

$$E_{\theta_{-i} \in \Theta_{-i}}[u_i(f(\theta_i, \theta_{-i}), \theta_i)] \ge \hat{u}_i(\theta_i)$$

$$u_i(f(\theta), \theta_i) \geq \hat{u}_i(\theta_i)$$

## **Direct Mechanisms**

#### Mechanism Design

Direct Mechanisms

## **Definition**

A direct mechanism is a mechanism where

$$S_i = \Theta_i$$
 for all  $i$ 

and

$$g(\theta) = f(\theta)$$
 for all  $\theta \in \Theta_1 \times \ldots \times \Theta_n$ 

# **Incentive Compatibility**

#### Mechanism Design

Kate Larson

Introduction Introduction Fundamentals

Mechanism Design Problem Direct Mechanisms Revelation Principle

Revelation Principle Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear

### Definition

A direct mechanism is incentive compatible if it has an equilibrium s\* where

$$s_i^*(\theta_i) = \theta_i$$

for all  $\theta_i \in \Theta_i$  and for all i. That is, truth-telling by all agents is an equilibrium.

### **Definition**

A direct mechanism is **strategy-proof** if it is incentive compatible and the equilibrium is a dominant strategy equilibrium.

# **Revelation Principle**

#### Mechanism Design

Kate Larso

Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GlibbardSatterthwaite
Single-Peaked
Preferences
Quasi-Linear

### Theorem

Suppose there exists a mechanism  $M = (S_1, \ldots, S_n, g(\cdot))$  that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f.

[Gibbard 73; Green & Laffont 77; Myerson 79]

"The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism."

[McAfee & McMillan 87]

## Revelation Principle: Intuition

#### Mechanism Design

Kate Larso

Introduction

Fundamentals

Mechanisr

Mechanism Design

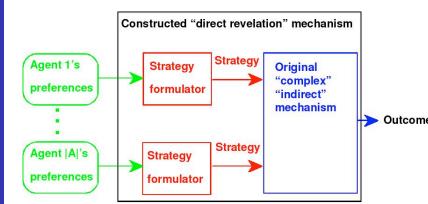
Direct Mechanisms

Revelation Principle

Gibbard-Satterthwaite

Single-Peaked Preferences Quasi-Linear

Quasi-Linear Preferences



# Theoretical Implications

#### Mechanism Design

Kate Larso

Introduction

Mechanisms

Mechanism Design
Problem

Direct Mechanisms

Revelation Principle

Satterthwaite
Single-Peaked
Preferences
Quasi-Linear
Preferences
Groves Mechanism

### Literal interpretation: Need only study direct mechanisms

- A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
- If no direct mechanism can implement social choice function f then no mechanism can
- Useful because the space of possible mechanisms is huge

# **Practical Implications**

#### Mechanism Design

Kate Larso

Introduction Introduction Fundamentals

Mechanism Design Problem Direct Mechanisms Revelation Principle Gibbard-

Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanism Incentive-compatibility is "free"

- Any outcome implemented by mechanism M can be implemented by incentive-compatible mechanism M'
- "Fancy" mechanisms are unneccessary
  - Any outcome implemented by a mechanism with complex strategy space S can be implemented by a direct mechanism

**BUT** Lots of mechanisms used in practice are not direct and incentive-compatible!

# **Practical Implications**

#### Mechanism Design

Kate Larso

Introduction Introduction Fundamentals

Mechanism Design Problem Direct Mechanisms Revelation Principle Gibbard-Satterthwaite

Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanism

- Incentive-compatibility is "free"
  - Any outcome implemented by mechanism M can be implemented by incentive-compatible mechanism M'
- "Fancy" mechanisms are unneccessary
  - Any outcome implemented by a mechanism with complex strategy space S can be implemented by a direct mechanism

**BUT** Lots of mechanisms used in practice are not direct and incentive-compatible!

## **Quick Review**

#### Mechanism Design

Kate Larso

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle

Gibbard-Satterthwaite

Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanism

### We now know

- What a mechanism is
- What it means for a SCF to be dominant-strategy implementable
- Revelation Principle

We do not yet know

What types of SCF are dominant-strategy implementable

# Gibbard-Satterthwaite Impossibility

#### Mechanism Design

Kate Larsor

Introductio Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle

Gibbard-Satterthwaite

Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanis

### Theorem

### Assume that

- O is finite and  $|O| \ge 3$ ,
- each  $o \in O$  can be achieved by SCF f for some  $\theta$ , and
- ⊖ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and only if it is dictatorial.

### Definition

SCF f is dictatorial if there is an agent i such that for all  $\theta$ 

$$f(\theta) \in \{o \in O | u_i(o, \theta_i) \ge u_i(o', \theta_i) \forall o' \in O\}$$

# Circumventing Gibbard-Satterthwaite

#### Mechanism Design

Kate Larsor

ntroduction Introduction Fundamentals

Mechanisms Mechanism Desigr Problem

Revelation Principl

Gibbard-Satterthwaite

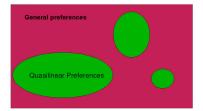
Preferences

Quasi-Linear

Preferences

Use a weaker equilibrium concept

- Design mechanisms where computing a beneficial manipulation is hard
- Randomization
- Restrict the structure of agents' preferences



# Single-Peaked Preferences

#### Mechanism Design

Kate Larso

Introduction Introduction

Mechanisms

Mechanism Design
Problem

Direct Mechanisms
Revelation Principle

Single-Peaked Preferences Quasi-Linear Preferences • Define A = [0, 1] be the outcome space

- Each agent  $i \in N$  has a preference  $\succeq_i$  over A such that  $\exists p_i \in A$  such that for all  $\{x\} \in A \setminus \{p_i\}$  and for all  $\lambda \in [0,1), (\lambda x + (1-\lambda)p_i) \succeq_i x$ .
  - political decisions
  - facility location
  - temperature settings
- The Median-Voter rule is strategy-proof.

# Single-Peaked Preferences

#### Mechanism Design

Kate Larso

Introduction
Introduction

Mechanisms

Mechanism Design
Problem

Direct Mechanisms
Revelation Principle

Gibbard-Satterthwaite Single-Peaked Preferences

Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanism

- Define A = [0, 1] be the outcome space
- Each agent  $i \in N$  has a preference  $\succeq_i$  over A such that  $\exists p_i \in A$  such that for all  $\{x\} \in A \setminus \{p_i\}$  and for all  $\lambda \in [0,1), (\lambda x + (1-\lambda)p_i) \succeq_i x$ .
  - political decisions
  - facility location
  - temperature settings
- The Median-Voter rule is strategy-proof.

# Quasi-linear preferences

#### Mechanism Design

Kate Larson

Introduction Introduction

Mechanisms
Mechanism Design
Problem
Direct Mechanisms

Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences

Quasi-Linear Preferences • Outcome  $o = (x, t_1, ..., t_n)$ 

- x is a "project choice"
- $t_i \in \mathbb{R}$  are transfers (money)
- Utility function of agent i

$$u_i(o, \theta_i) = v_i(x, \theta_i) - t_i$$

Quasi-linear mechanism

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

$$g(\cdot) = (x(\cdot), t_1(\cdot), \dots, t_n(\cdot))$$

# Social Choice Functions and Quasi-linearity

#### Mechanism Design

Kate Larson

Introduction Introduction

Mechanisms
Mechanism Design
Problem
Direct Mechanisms

Revelation Principl Gibbard-Satterthwaite Single-Peaked Preferences

Quasi-Linear Preferences • SCF is **efficient** if for all  $\theta$ 

$$\sum_{i=1}^{n} v_i(x(\theta), \theta_i) \geq \sum_{i=1}^{n} v_i(x'(\theta), \theta_i) \forall x'(\theta)$$

This is also known as social welfare maximizing

SCF is budget-balanced if

$$\sum_{i=1}^n t_i(\theta) = 0$$

Weakly budget-balanced if

$$\sum_{i=1}^n t_i(\theta) \geq 0$$

# Groves Mechanisms [Groves 73]

#### Mechanism Design

Kate Larson

Introduction Introduction Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite

Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanisms A Groves mechanism  $M = (S_1, \dots, S_n, (x, t_1, \dots, t_n))$  is defined by

Choice rule

$$x^*(\theta) = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfer rules

$$t_i(\theta) = h_i(\theta_{-i}) - \sum_{j \neq i} v_j(x^*(\theta), \theta_j)$$

where  $h_i(\cdot)$  is an (arbitrary) function that does not depend on the reported type  $\theta'_i$  of agent i.

## **Groves Mechanisms**

#### Mechanism Design

Kate Larson

#### Introduction

Fundamentals

#### Mechanism

Mechanism Design

Direct Mechanisms

Gibbard-

Satterthwaite

Preferences
Quasi-Linear
Preferences

Groves Mechanisms

### Theorem

Groves mechanisms are strategy-proof and efficient.

We have gotten around Gibbard-Satterthwaite.

## **Proof**

#### Mechanism Design

Kate Larsor

ntroduction

Mechanisms
Mechanism Design
Problem
Direct Mechanisms
Revelation Principle
GibbardSatterthwaite
Single-Peaked

Gibbard-Gibbard-Satterthwaite Single-Peaked Preferences Quasi-Linear Preferences Groves Mechanisms Agent *i*'s utility for strategy  $\hat{\theta}_i$ , given  $\hat{\theta}_{-i}$  from agents  $j \neq i$  is

$$u_{i}(\hat{\theta}_{i}) = v_{i}(x^{*}(\hat{\theta}, \theta_{i}) - t_{i}(\hat{\theta})$$

$$= v_{i}(x^{*}(\hat{\theta}, \theta_{i}) + \sum_{j \neq i} v_{j}(x^{*}(\hat{\theta}, \hat{\theta}_{j}) - h_{i}(\hat{\theta}_{-i}))$$

Ignore  $h_i(\hat{\theta}_{-i})$  and notice  $x^*(\hat{\theta}) = \arg\max_x \sum_i v_i(x, \hat{\theta}_i)$  i.e it maximizes the sum of reported values. Therefore, agent i should announce  $\hat{\theta}_i = \theta_i$  to maximize its own payoff.

**Thm:** Groves mechanisms are unique (up to  $h_i(\theta_{-i})$ ).

## Vickrey-Clarke-Groves Mechanism

aka Clarke mechansism, aka Pivotal mechanism

#### Mechanism Design

Kate Larson

Introduction
Introduction
Fundamentals

Mechanisms
Mechanism Design
Problem
Direct Mechanisms

Revelation Principle
GibbardSatterthwaite
Single-Peaked
Preferences

Preferences
Quasi-Linear
Preferences

Groves Mechanisms

Implement efficient outcome

$$x^* = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Compute transfers

$$t_i(\theta) = \sum_{j \neq i} v_j(x^{-i}, \theta_j) - \sum_{j \neq i} v_j(x^*, \theta_j)$$

where 
$$x^{-i} = \arg\max_{x} \sum_{j \neq i} v_j(x, \theta_j)$$

VCG are efficient and strategy-proof.

## VCG Mechanism

#### Mechanism Design

Kate Larsor

Introduction

Introduction Fundamentals

#### Mechanism

Mechanism Design

Direct Mechanisms

Revelation Principle

Gibbard-

Single-Peake

Preferences Quasi-Linear

Preferences
Groves Mechanisms

Agent's equilibrium utility is

$$u_i((x^*,t),\theta_i) = v_i(x^*,\theta_i) - \left[ \sum_{j\neq i} v_j(x^{-i},\theta_j) - \sum_{j\neq i} v_j(x^*,\theta_j) \right]$$
$$= \sum_{j=1}^n v_j(x^*,\theta_j) - \sum_{j\neq i} v_j(x^{-i},\theta_j)$$

marginal contribution to the welfare of the sys

# Examples

Mechanism Design

Kate Larson

Introduction

Fundamental:

Problem

Direct Mechanism

Gibbard

Satterthwaite

Oi I D I I

Preference

Quasi-Linear Preferences Groves Mechanisms