CS 798: Multiagent Systems Introduction to Social Choice

Kate Larson

Computer Science University of Waterloo

・ コ マ チ (雪 マ チ (雪 マ ー)

Outline

2 Two Alternatives: A Special Case

- 3 Three or More Alternatives
 - Case 1: Agents Specify Top Preference
 - Case 2: Agents Specify Complete Preferences
- Properties for Voting Protocols
 - Properties

Image: A matrix

< ∃ >

What Is Social Choice Theory

- Study of decision problems in which a group has to make the decision
- The decision affects all members of the group
 - Their opinions should count!
- Applications
 - Political elections
 - Other elections
 - Allocations problems (e.g. allocation of money among agents, alocation of goods, tasks, resources....)
 - o...

ヘロト 人間 ト イヨト イヨト

э.

Formal Model

CS Applications of Social Choice

- Multiagent Planning
- Computerized Elections
- Accepting a joint project
- Rating Web articles
- Rating CD's, movies,...

< ロ > < 同 > < 回 > < 回 > .

Formal Model

Formal Model

- Set of agents $N = \{1, 2, \cdots, n\}$
- Set of outcomes O
- Set of strict total orders on O, L
- Social choice function: $f: L^n \to O$
- Social welfare function: *f* : *Lⁿ* → *L⁻* where *L⁻* is the set of weak total orders on *O*

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ●

Formal Model

Assumptions

Agents have preferences over alternatives

- Agents can rank order outcomes
- Voters are sincere
 - They truthfully tell the center their preferences
- Outcome is enforced on all agents

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Formal Model

Assumptions

- Agents have preferences over alternatives
 - Agents can rank order outcomes
- Voters are sincere
 - They truthfully tell the center their preferences
- Outcome is enforced on all agents

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Formal Model

Assumptions

- Agents have preferences over alternatives
 - Agents can rank order outcomes
- Voters are sincere
 - They truthfully tell the center their preferences
- Outcome is enforced on all agents

< ロ > < 同 > < 回 > < 回 > < □ > <

Assume that there are only two alternatives, x and y. We can represent the family of preferences by

 $(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$

where α_i is 1, 0, or -1 according to whether agent *i* preferes *x* to *y*, is ambivalent between them, or prefers *y* to *x*.

Definition (Paretian)

A social choice function is **paretian** if it respects unanimity of strict preferences on the part of the agents.

ヘロト 人間 ト イヨト イヨト

Assume that there are only two alternatives, x and y. We can represent the family of preferences by

 $(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$

where α_i is 1, 0, or -1 according to whether agent *i* preferes *x* to *y*, is ambivalent between them, or prefers *y* to *x*.

Definition (Paretian)

A social choice function is **paretian** if it respects unanimity of strict preferences on the part of the agents.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Majority Voting

$$f(\alpha_1,\ldots,\alpha_n) = \operatorname{sign} \sum_i \alpha_i$$

 $f(\alpha) = 1$ if and only if more agents prefer x to y and -1 if and onyl if more agents prefer y to x. Clearly majority voting is paretian.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Additional Properties

- Symmetric among agents
- Neutral between alternatives
- Positively responsive

Theorem (May's Theorem)

A social choice function f is a majority voting rule if and only if it is symmetric among agents, neutral between alternatives, and positively responsive.

< ロ > < 同 > < 回 > < 回 > < □ > <

Additional Properties

- Symmetric among agents
- Neutral between alternatives
- Positively responsive

Theorem (May's Theorem)

A social choice function f is a majority voting rule if and only if it is symmetric among agents, neutral between alternatives, and positively responsive.

< ロ > < 同 > < 回 > < 回 > .

-

Plurality Voting

The rules of plurality voting are probably familiar to you (e.g. the Canadian election system)

- One name is ticked on a ballot
- One round of voting
- One candidate is chosen
 - Candidate with the most votes

Is this a "good" voting system?

< ロ > < 同 > < 回 > < 回 > .

Plurality Voting

The rules of plurality voting are probably familiar to you (e.g. the Canadian election system)

- One name is ticked on a ballot
- One round of voting
- One candidate is chosen
 - Candidate with the most votes

Is this a "good" voting system?

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< □ > < 同 > < 回 > < 回 > < 回 >

Plurality Example

- 3 candidates
 - Lib, NDP, C

• 21 voters with the following preferences

- 10 C>NDP>Lib
- 6 NDP>Lib>C
- 5 Lib>NDP>C
- Result: C 10, NDP 6, Lib 5

The Conservative candidate wins, but a majority of voters (11) prefer all other parties more than the Conservatives.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< ロ > < 同 > < 回 > < 回 > .

Plurality Example

- 3 candidates
 - Lib, NDP, C

• 21 voters with the following preferences

- 10 C>NDP>Lib
- 6 NDP>Lib>C
- 5 Lib>NDP>C
- Result: C 10, NDP 6, Lib 5

The Conservative candidate wins, but a majority of voters (11) prefer all other parties more than the Conservatives.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

What Can We Do?

Majority system works well when there are two alternatives, but has problems when there are more alternatives.

Proposal: Organize a series of votes between 2 alternatives at a time

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

What Can We Do?

Majority system works well when there are two alternatives, but has problems when there are more alternatives.

Proposal: Organize a series of votes between 2 alternatives at a time

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< ロ > < 同 > < 回 > < 回 > .

Agendas

- 3 alternatives {*A*, *B*, *C*}
- Agenda: (A, B, C)

where X is the outcome of majority vote between A and B, and Y is the outcome of majority vote between X and C.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

Agenda Paradox: Power of the Agenda Setter

3 types of agents: A > C > B (35%), B > A > C (33%), C > B > A (32%).

3 different agendas:

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

Pareto Dominated Winner Paradox

- 4 alternatives and 3 agents
 - X > Y > B > A
 - A > X > Y > B
 - B > A > X > Y

BUT Everyone prefers X to Y

Kate Larson

Social Choice

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

Pareto Dominated Winner Paradox

- 4 alternatives and 3 agents
 - X > Y > B > A
 - A > X > Y > B
 - B > A > X > Y

BUT Everyone prefers X to Y

Kate Larson

Social Choice

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

-

Maybe the problem is with the ballots

Now have agents reveal their entire preference ordering. Condorcet proposed the following

- Compare each pair of alternatives
- Declare "A" is socially preferred to "B" if more voters strictly prefer A to B

Condorcet Principle: If one alternative is preferred to *all other* candidates, then it should be selected.

Definition (Condorcet Winner)

An outcome $o \in O$ is a Condorcet Winner if $\forall o' \in O$, $\#(o > o') \ge \#(o' > o)$.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< ロ > < 同 > < 回 > < 回 > .

Condorcet Example

- 3 candidates
 - Lib, NDP, C

21 voters with the following preferences

- 10 C>NDP>Lib
- 6 NDP>Lib>C
- 5 Lib>NDP>C

Result: NDP win since 11/21 prefer them to the Conservatives and 16/21 prefer them to the Liberals.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

-

Condorcet Example

- 3 candidates
 - Lib, NDP, C

• 21 voters with the following preferences

- 10 C>NDP>Lib
- 6 NDP>Lib>C
- 5 Lib>NDP>C

Result: NDP win since 11/21 prefer them to the Conservatives and 16/21 prefer them to the Liberals.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

-

There Are Other Problems With Condorcet Winners

- 3 candidates: Liberal, NDP, Conservative
- 3 voters with preferences
 - Liberal > NDP>Conservative
 - NDP>Conservative>Liberal
 - Conservative>Liberal>NDP

Result: Condorcet winners do not always exist.

э

Borda Count

- Each ballot is a list of ordered alternatives
- On each ballot, compute the rank of each alternative
- Rank order alternatives based on decreasing sum of their ranks

$$\begin{array}{rl} A > B > C & A : 4 \\ A > C > B & \Rightarrow B : 8 \\ C > A > B & C : 6 \end{array}$$

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< □ > < 同 > < 回 > < 回 > < 回 >

Borda Count

- The Borda Count is simple
- There is always a Borda winner
- BUT the Borda winner is not always the Condorcet winner

3 voters: 2 with preferences B>A>C>D and one with A>C>D>B Borda scores: A:5, B:6, C:8, D:11 Therefore A wins, but B is the Condorcet winner.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< ロ > < 同 > < 回 > < 回 > .

-

Borda Count

- The Borda Count is simple
- There is always a Borda winner
- BUT the Borda winner is not always the Condorcet winner

3 voters: 2 with preferences B>A>C>D and one with A>C>D>B Borda scores: A:5, B:6, C:8, D:11 Therefore A wins, but B is the Condorcet winner.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

-

< 🗇 🕨

Other Borda Count Issues: Inverted-Order Paradox Agents

- X>C>B>A
- A>X>C>B
- B>A>X>C
- X>C>B>A
- A>X>C>B
- B>A>X>C
- X>C>B>A

Borda Scores

• X:13, A:18, B:19, C:20

Remove X

• C:13, B:14, A:15

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

 $\bullet \equiv \bullet$

Other Borda Count Issues: Inverted-Order Paradox Agents

- X>C>B>A
- A>X>C>B
- B>A>X>C
- X>C>B>A
- A>X>C>B
- B>A>X>C
- X>C>B>A

Borda Scores

• X:13, A:18, B:19, C:20

Remove X

• C:13, B:14, A:15

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< □ > < 同 > < 回 > < 回 > < 回 >

Vulnerability to Irrelevant Alternatives

3 types of agents

- X>Z>Y (35%)
- Y>X>Z (33%)
- Z>Y>X (32%)

The Borda winner is X.

Remove alternative Z. Then the Borda winner is Y.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

< ロ > < 同 > < 回 > < 回 > .

-

Vulnerability to Irrelevant Alternatives

- 3 types of agents
 - X>Z>Y (35%)
 - Y>X>Z (33%)
 - Z>Y>X (32%)

The Borda winner is X.

Remove alternative Z. Then the Borda winner is Y.

Case 1: Agents Specify Top Preference Case 2: Agents Specify Complete Preferences

Other Scoring Rules

- Copeland
 - Do pairwise comparisons of outcomes.
 - Assign 1 point if an outcome wins, 0 if it loses, $\frac{1}{2}$ if it ties
 - Winner is the outcome with the highest summed score
- Kemeny
 - Given outcomes *a* and *b*, ranking *r* and vote *v*, define $\delta_{a,b}(r, v) = 1$ if *r* and *v* agree on relative ranking of *a* and *b*
 - Kemeny ranking r' maximises $\sum_{v} \sum_{a,b} \delta_{a,b}(r,v)$

Properties for Voting Protocols

Property (Universality)

A voting protocol should work with any set of preferences.

Property (Transitivity)

A voting protocol should produce an ordered list of alternatives (social welfare function).

Property (Pareto efficiency)

If all agents prefer X to Y, then in the outcome X should be prefered to Y. That is, SWF f is pareto efficient if for any $o_1, o_2 \in O$, $\forall i \in N, o_1 >_i o_2$ then $o_1 >_f o_2$.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

Properties

More Properties

Property (Independence of Irrelevant Alternatives (IIA))

Comparison of two alternatives depends only on their standings among agents' preferences, and not on the ranking of other alternatives. That is, SWF f is IIA if for any $o_1, o_2 \in O$

Property (No Dictators)

A SWF f has no dictator if $\neg \exists i \forall o_1, o_2 \in O, o_1 >_i o_2 \Rightarrow o_1 >_f o_2$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3