CS 798: Multiagent Systems
Repeated and Stochastic Games

Kate Larson

Computer Science
University of Waterloo
Outline

1. Repeated Games
2. Stochastic Games
Introduction

- So far we have assumed that a normal-form game is played once, but there are many situations where this is not true
 - The normal-form game is called a *stage game*
- When repeating a game there are new questions that need to be addressed
 - What can agents’ observe?
 - What can agents’ remember?
 - How do you define agents’ utility?
- The answers to these questions can depend on whether a game is repeated a finite or infinite number of times.
Introduction

- So far we have assumed that a normal-form game is played once, but there are many situations where this is not true
 - The normal-form game is called a *stage game*
- When repeating a game there are new questions that need to be addressed
 - What can agents’ observe?
 - What can agents’ remember?
 - How do you define agents’ utility?
- The answers to these questions can depend on whether a game is repeated a finite or infinite number of times.
Introduction

- So far we have assumed that a normal-form game is played once, but there are many situations where this is not true
 - The normal-form game is called a *stage game*
- When repeating a game there are new questions that need to be addressed
 - What can agents’ observe?
 - What can agents’ remember?
 - How do you define agents’ utility?
- The answers to these questions can depend on whether a game is repeated a finite or infinite number of times.
Finitely Repeated Games

Play the Prisoners’ Dilemma several times with a partner? What happens?

\[
\begin{array}{cc|cc|cc|cc}
 & & \text{C} & & \text{D} & & \text{C} & & \text{D} \\
\hline
\text{C} & & -1, -1 & & -4, 0 & & -1, -1 & & -4, 0 \\
\text{D} & & 0, -4 & & -3, -3 & & 0, -4 & & -3, -3 \\
\hline
\end{array}
\]
Finitely Repeated Games

- Finitely repeated games can be modeled as extensive form games.
- They have a much richer strategy space:
 - A *stationary* strategy has an agent playing the same strategy in each stage game (memoryless).
 - In general, however, strategies can depend on previous actions.
- If the stage game has a dominant strategy then you can solve the finitely repeated version by applying backward induction.
Finitely Repeated Games

- Finitely repeated games can be modeled as extensive form games
- They have a much richer strategy space
 - A *stationary* strategy has an agent playing the same strategy in each stage game (memoryless)
 - In general, however, strategies can depend on previous actions
- If the stage game has a dominant strategy then you can solve the finitely repeated version by applying backward induction
Infinitely Repeated Games

- Consider an *infinitely* repeated game in extensive form
 - What are the issues?
 - Infinite tree and so can not attach payoffs to terminal nodes
 - Unclear how to formulate payoffs (simply summing the payoff in each stage game results in infinite payoffs)
- What are the strategies?
Infinitely Repeated Games

- Consider an *infinitely* repeated game in extensive form
 - What are the issues?
- Infinite tree and so can not attach payoffs to terminal nodes
- Unclear how to formulate payoffs (simply summing the payoff in each stage game results in infinite payoffs)
- What are the strategies?
Rewards in Infinite Games

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i, the average reward of i is

$$\lim_{k \to \infty} \sum_{j=1}^{k} \frac{r_j}{k}.$$

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i and a discount factor β with $0 \leq \beta \leq 1$, i's future discounted reward is

$$\sum_{j=1}^{\infty} \beta^j r_j.$$
Rewards in Infinite Games

Definition

Given an infinite sequence of payoffs \(r_1, r_2, \ldots \) for player \(i \), the average reward of \(i \) is

\[
\lim_{k \to \infty} \sum_{j=1}^{k} \frac{r_j}{k}.
\]

Definition

Given an infinite sequence of payoffs \(r_1, r_2, \ldots \) for player \(i \) and a discount factor \(\beta \) with \(0 \leq \beta \leq 1 \), \(i \)'s future discounted reward is

\[
\sum_{j=1}^{\infty} \beta^j r_j.
\]
Strategies

- A pure strategy is a choice of action at every decision point.
 That is, and action at every stage game (an infinite number of actions).

- Famous strategies for the Prisoner’s Dilemma:
 - Tit-for-Tat: Start out cooperating. If the opponent defects, then defect for one round. Then go back to cooperating.
 - Trigger (Grim): Start out cooperating. If the opponent defects, then defect forever.
Strategies

- A pure strategy is a choice of action at every decision point.
 - That is, and action at every stage game (an infinite number of actions).
- Famous strategies for the Prisoner’s Dilemma:
 - Tit-for-Tat: Start out cooperating. If the opponent defects, then defect for one round. Then go back to cooperating.
 - Trigger (Grim): Start out cooperating. If the opponent defects, then defect forever.
Nash Equilibrium

- We are unable to write down an induced normal form game and then appeal to Nash’s existence theorem (and it does not apply to infinite games).
- Since there are an infinite number of pure strategies, there are possibly an infinite number of equilibrium!
- It is possible to characterize the payoffs that are achievable under equilibrium.
Folk Theorem

- Let $v_i = \min_{s_i \in S_i} \max_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$

- A payoff profile $r = (r_1, \ldots, r_n)$ is enforceable if $\forall i \ r_i \geq v_i$.

- A payoff profile $r = (r_1, \ldots, r_n)$ is feasible if there exist rational, nonnegative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha_a u_i(a)$ with $\sum_{a \in A} \alpha_a = 1$.
 - i.e. a convex rational combination of outcomes
Folk Theorem

Theorem

Consider any n-player game G and any payoff vector $r = (r_1, \ldots, r_n)$.

1. If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.

2. If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.
What if we don’t always repeat the same stage game?

- Agents repeatedly play games from a set of normal-form games
- The game played at any iteration depends on the previous game played and on the actions taken by all agents in that game

A Markov Decision Process \((Q, A, P, R)\) where

- \(Q\) is a set of states
- \(A\) is a set of actions
- \(R\) is a set of rewards, associated with states
- \(P : Q \times A \times Q \mapsto [0, 1]\) is a transition probability functions such that \(P(q, a, q')\) is the probability of transitioning from state \(q\) to state \(q'\) when the agent takes action \(a\)
Stochastic Games

- What if we don’t always repeat the same stage game?
 - Agents repeatedly play games from a set of normal-form games
 - The game played at any iteration depends on the previous game played and on the actions taken by all agents in that game

- A Markov Decision Process \((Q, A, P, R)\) where
 - \(Q\) is a set of states
 - \(A\) is a set of actions
 - \(R\) is a set of rewards, associated with states
 - \(P : Q \times A \times Q \mapsto [0, 1]\) is a transition probability functions such that \(P(q, a, q')\) is the probability of transitioning from state \(q\) to state \(q'\) when the agent takes action \(a\)
A stochastic game is \((Q, N, A, P, R)\) where

- \(Q\) is a finite set of states
- \(A = A_1 \times \ldots \times A_n\) where \(A_i\) is a finite set of actions available to player \(i\)
- \(P : Q \times A \times Q \rightarrow [0, 1]\) is the transition probability function where \(P(q, a, q')\) is the probability of transitioning from state \(q\) to state \(q'\) when joint action \(a\) is played
- \(R = r_1, \ldots, r_n\) where \(r_i : Q \times A \rightarrow \mathbb{R}\) is a real valued payoff function for player \(i\)
Strategies

- A pure strategy specifies an action conditional on every possible history

- Restricted classes of strategies
 - *Behavioral strategies*: $s_i(h_t, a_i)$ returns the probability of playing action a_i for history h_t
 - *Markov strategies*: s_i is a behavioral strategy in which $s_i(h_t, a_i) = s_i(h'_t, a_i)$ if $q_t = q'_t$ are the final states in h_t and h'_t respectively
 - *Stationary strategies*: s_i is a Markov strategy in which $s_i(h, a_i) = s_i(h', a_i)$ if $q = q'$ where q and q' are final states of h and h' respectively (i.e. no dependence on t)
Strategies

- A pure strategy specifies an action conditional on every possible history.
- Restricted classes of strategies:
 - Behavioral strategies: $s_i(h_t, a_i)$ returns the probability of playing action a_i for history h_t.
 - Markov strategies: s_i is a behavioral strategy in which $s_i(h_t, a_i) = s_i(h_t', a_i)$ if $q_t = q_t'$ are the final states in h_t and h_t' respectively.
 - Stationary strategies: s_i is a Markov strategy in which $s_i(h, a_i) = s_i(h', a_i)$ if $q = q'$ where q and q' are final states of h and h' respectively (i.e. no dependence on t).
Equilibrium

- *Markov perfect equilibrium*: A strategy profile consisting only of Markov strategies that is a Nash equilibrium regardless of the starting state

Theorem

Every n-player general sum discounted reward stochastic game has a Markov perfect equilibrium.