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Normal Form

A normal form game is defined by
Finite set of agents (or players) N, |N| = n
Each agent i has an action space Ai

Ai is non-empty and finite

Outcomes are defined by action profiles, a = (a1, . . . , an),
where ai is the action taken by agent i
Each agent has a utility function ui : A1 × . . .× An 7→ R
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Examples

Prisoners’ Dilemma

C D
C a,a b,c
D c,b d,d

c > a > d > b

Pure coordination game
∀ action profiles
a ∈ A1 × . . .× An and ∀i , j ,
ui(a) = uj(a).

L R
L 1,1 0,0
R 0,0 1,1

Agents do not have conflicting
interests. There sole challenge
is to coordinate on an action
which is good for all.
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Zero-sum games

∀a ∈ A1 × A2, u1(a) + u2(a) = 0. That is, one player gains at
the other player’s expense.

Matching Pennies

H T
H 1,-1 -1, 1
T -1,1 1,-1

H T
H 1 -1
T -1 1

Given the utility of one agent,
the other’s utility is known.
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More Examples

Most games have elements of both cooperation and
competition.

BoS

H S
H 2,1 0,0
S 0,0 1,2

Hawk-Dove

D H
D 3,3 1,4
H 4,1 0,0
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Analyzing Games

We have defined some games, but so far we have no way of
discussing what a good outcome of a game is.

Sometimes one outcome o is at least as good for every
agent as another outcome o′ and there is some agent who
strictly prefers o to o′.

It seem reasonable to say that o is better than o′

We say that o Pareto dominates o′.

An outcome o∗ is Pareto-optimal if there is no other
outcome that Pareto-dominates it.
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Examples

Prisoners’ Dilemma

C D
C -1,-1 -4,0
D 0, -4 -3,-3

Pure coordination game

L R
L 1,1 0,0
R 0,0 1,1
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Examples

Matching Pennies
H T

H 1, -1 -1, 1
T -1, 1 1, -1

BoS

H S
H 2, 1 0,0
S 0,0 1,2
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Strategies

Notation: Given set X , let ∆X be the set of all probability
distributions over X .

Definition
Given a normal form game, the set of mixed strategies for
agent i is

Si = ∆Ai

The set of mixed strategy profiles is S = S1 × . . .× Sn.

Definition
A strategy si is a probability distribution over Ai . si(ai) is the
probability action ai will be played by mixed strategy si .
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Strategies

Definition
The support of a mixed strategy si is

{ai |si(ai) > 0}

Definition
A pure strategy si is a strategy such that the support has size 1,
i.e.

|{ai |si(ai) > 0}| = 1

A pure strategy plays a single action with probability 1.
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Expected Utility
The expected utility of agent i given strategy profile s is

ui(s) =
∑
a∈A

ui(a)Πn
j=1sj(aj)

Example

C D
C -1,-1 -4,0
D 0, -4 -3,-3

Given strategy profile
s = ((1

2 , 1
2), ( 1

10 , 9
10))

u1 = −1(
1
2
)(

1
10

)− 4(
1
2
)(

9
10

)− 3(
1
2
)(

9
10

) = −3.2

u2 = −1(
1
2
)(

1
10

)− 4(
1
2
)(

1
10

)− 3(
1
2
)(

9
10

) = −1.6
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Best-response

Given a game, what strategy should an agent choose?
We first consider only pure strategies.

Definition
Given a−i , the best-response for agent i is ai ∈ Ai such that

ui(a∗i , a−i) ≥ ui(a′i , a−i)∀a′i ∈ Ai

Note that the best response may not be unique.
A best-response set is

Bi(a−i) = {ai ∈ Ai |ui(ai , a−i) ≥ ui(a′i , a−i)∀a′i ∈ Ai}
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Nash Equilibrium

Definition
A profile a∗ is a Nash equilibrium if ∀i , a∗i is a best response to
a∗−i . That is

∀iui(a∗i , a∗−i) ≥ ui(a′i , a∗−i) ∀a
′
i ∈ Ai

Equivalently, a∗ is a Nash equilibrium if ∀i

a∗i ∈ B(a∗−i)
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Examples

PD
C D

C -1,-1 -4,0
D 0,-4 -3,-3

BoS
H T

H 2,1 0,0
T 0,0 1,2

Matching Pennies
H T

H 1,-1 -1,1
T -1,1 1,-1
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Nash Equilibria

We need to extend the definition of a Nash equilibrium.
Strategy profile s∗ is a Nash equilibrium is for all i

ui(s∗i , s∗−i) ≥ ui(s′i , s∗−i) ∀s
′
i ∈ Si

Similarly, a best-response set is

B(s−i) = {si ∈ Si |ui(si , s−i) ≥ ui(s′i , s−i)∀s′i ∈ Si}
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Characterization of Mixed Nash Equilibria

s∗ is a (mixed) Nash equilibrium if and only if
the expected payoff, given s∗−i , to every action to which s∗i
assigns positive probability is the same, and
the expected payoff, given s∗−i to every action to which s∗i
assigns zero probability is at most the expected payoff to
any action to which s∗i assigns positive probability.
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Existence

Theorem (Nash, 1950)
Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.
Basic idea: Define set X to be all mixed strategy profiles.
Show that it has nice properties (compact and convex).
Define f : X 7→ 2X to be the best-response set function, i.e.
given s, f (s) is the set all strategy profiles s′ = (s′1, . . . , s′n) such
that s′i is i ’s best response to s′−i .
Show that f satisfies required properties of a fixed point
theorem (Kakutani’s or Brouwer’s).
Then, f has a fixed point, i.e. there exists s such that f (s) = s.
This s is mutual best-response – NE!
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Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy?
Randomize to confuse your opponent
Randomize when you are uncertain about the other’s
action
Mixed strategies are a description of what might happen in
repeated play
Mixed strategies describe population dynamics
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Interpretations of Nash Equilibria

Consequence of rational inference
Focal point
Self-enforcing agreement
Stable social convention
...
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