CS 798: Multiagent Systems Introduction to Mechanism Design

Kate Larson

Computer Science University of Waterloo

ヘロア 人間 アメヨア 人口 ア

ъ

Introduction Fundamentals Mechanism Design Problem Direct Mechanisms and the Revelation Principle

Outline

- 3 Mechanism Design Problem
- Oirect Mechanisms and the Revelation Principle

ヘロン ヘアン ヘビン ヘビン

ъ

Introduction Fundamentals Mechanism Design Problem Direct Mechanisms and the Revelation Principle

Introduction

Game Theory

 Given a game we are able to analyse the strategies agents will follow

Social Choice

 Given a set of agents' preferences we can choose some outcome

ヘロト ヘワト ヘビト ヘビト

Today Mechanism Design

- Game Theory + Social Choice
- Goal of Mechanism Design is to
 - Obtain some outcome (function of agents' preferences)
 - But agents are rational
 - They may lie about their preferences

Goal

Define the rules of a game so that in equilibrium the agents do what we want.

ヘロア 人間 アメヨア 人口 ア

Today Mechanism Design

- Game Theory + Social Choice
- Goal of Mechanism Design is to
 - Obtain some outcome (function of agents' preferences)
 - But agents are rational

• They may lie about their preferences

Goal

Define the rules of a game so that in equilibrium the agents do what we want.

ヘロン ヘアン ヘビン ヘビン

ъ

Today Mechanism Design

- Game Theory + Social Choice
- Goal of Mechanism Design is to
 - Obtain some outcome (function of agents' preferences)
 - But agents are rational
 - They may lie about their preferences

Goal

Define the rules of a game so that in equilibrium the agents do what we want.

・ロト ・ 理 ト ・ ヨ ト ・

Today Mechanism Design

- Game Theory + Social Choice
- Goal of Mechanism Design is to
 - Obtain some outcome (function of agents' preferences)
 - But agents are rational
 - They may lie about their preferences

Goal

Define the rules of a game so that in equilibrium the agents do what we want.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

• Set of possible outcomes O

- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevent to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f: \Theta_1 \times \ldots \times \Theta_n \to O$$

ヘロア 人間 アメヨア 人口 ア

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevent to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevent to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

-

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevent to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution

• Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

イロト 不得 とくほ とくほ とうほ

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevent to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f: \Theta_1 \times \ldots \times \Theta_n \to O$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Examples of Social Choice Functions

• Voting:

Choose a candidate among a group

- Public project:
 - Decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation:
 - Allocate a single, indivisible item to one agent in a group

・ロット (雪) () () () ()

Examples of Social Choice Functions

- Voting:
 - Choose a candidate among a group

Public project:

• Decide whether to build a swimming pool whose cost must be funded by the agents themselves

• Allocation:

• Allocate a single, indivisible item to one agent in a group

ヘロン ヘアン ヘビン ヘビン

Examples of Social Choice Functions

- Voting:
 - Choose a candidate among a group

Public project:

• Decide whether to build a swimming pool whose cost must be funded by the agents themselves

Allocation:

• Allocate a single, indivisible item to one agent in a group

ヘロン ヘアン ヘビン ヘビン

Mechanisms

Recall that we want to implement a social choice function

- Need to know agents' preferences
- They may not reveal them to us truthfully

Example:

ヘロン ヘアン ヘビン ヘビン

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

- S_i is the strategy space of agent i
- $g: S_1 \times \ldots \times S_n \rightarrow O$ is the outcome function

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

- S_i is the strategy space of agent i
- $g: S_1 \times \ldots \times S_n \rightarrow O$ is the outcome function

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

A mechanism $M = (S_1, ..., S_n, g(\cdot))$ implements social choice function $f(\Theta)$ if there is an equilibrium strategy profile

$$\boldsymbol{s}^* = (\boldsymbol{s}^*_1(\theta_1, \dots, \boldsymbol{s}^*_n(\theta_n)))$$

of the game induced by M such that

$$g(s_1^*(\theta_1),\ldots,s_n^*(\theta_n))=f(\theta_1,\ldots,\theta_n)$$

for all

$$(\theta_1,\ldots,\theta_n)\in\Theta_1\times\ldots\times\Theta_n$$

・ロト ・ 理 ト ・ ヨ ト ・

3

We did not specify the type of equilibrium in the definition

Nash

 $u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Bayes-Nash

 $E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Dominant

 $u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i, \forall s_{-i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

We did not specify the type of equilibrium in the definition

Nash

 $u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Bayes-Nash

 $\mathsf{E}[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \geq \mathsf{E}[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Dominant

 $u_i(g(s_i^*(heta_i),s_{-i}^*(heta_{-i})), heta_i) \geq u_i(g(s_i'(heta_i),s_{-i}^*(heta_{-i})), heta_i)$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i, \forall s_{-i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

We did not specify the type of equilibrium in the definition

Nash

 $u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Bayes-Nash

 $\mathsf{E}[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge \mathsf{E}[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i$

Dominant

 $u_i(g(s^*_i(heta_i),s^*_{-i}(heta_{-i})), heta_i)\geq u_i(g(s'_i(heta_i),s^*_{-i}(heta_{-i})), heta_i)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\forall i, \forall \theta_i, \forall s'_i \neq s^*_i, \forall s_{-i}$

Properties for Mechanisms

- Efficiency
 - · Select the outcome that maximizes total utility
- Fairness
 - Select outcome that minimizes the variance in utility
- Revenue maximization
 - Select outcome that maximizes revenue to a seller (or, utility to one of the agents)
- Budget-balanced
 - Implement outcomes that have balanced transfers across agents
- Pareto Optimal
 - Only implement outcomes o^* for which for all $o' \neq o^*$ either $u_i(o', \theta_i) = u_i(o^*, \theta_i) \forall i \text{ or } \exists i \in N \text{ with } u_i(o', \theta_i) < u_i(o^*, \theta_i)$

イロン 不得 とくほど 不良 とうほう

We can not force agents to participate in the mechanism. Let $\hat{u}_i(\theta_i)$ denote the (expected) utility to agent i with type θ_i of its outside option.

• ex ante individual-rationality: agents choose to

interim individual-rationality: agents can withdraw once

$$\mathsf{E}_{\theta_{-i}\in\Theta_{-i}}[u_i(f(\theta_i,\theta_{-i}),\theta_i)] \geq \hat{u}_i(\theta_i)$$

ex-post individual-rationality: agents can withdraw from

Mechanism Design

We can not force agents to participate in the mechanism. Let $\hat{u}_i(\theta_i)$ denote the (expected) utility to agent i with type θ_i of its outside option.

• ex ante individual-rationality: agents choose to participate before they know their own type

 $E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$

interim individual-rationality: agents can withdraw once

$$E_{\theta_{-i}\in\Theta_{-i}}[u_i(f(\theta_i,\theta_{-i}),\theta_i)] \geq \hat{u}_i(\theta_i)$$

ex-post individual-rationality: agents can withdraw from

$U_i(f(\theta),\theta_i) \geq \hat{U}_i(\theta_i), \text{ for a product } i \in \mathbb{R}$ Mechanism Design

We can not force agents to participate in the mechanism. Let $\hat{u}_i(\theta_i)$ denote the (expected) utility to agent *i* with type θ_i of its outside option.

• ex ante individual-rationality: agents choose to participate before they know their own type

 $E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$

• interim individual-rationality: agents can withdraw once they know their own type

$$\mathsf{E}_{\theta_{-i}\in\Theta_{-i}}[u_i(f(\theta_i,\theta_{-i}),\theta_i)] \geq \hat{u}_i(\theta_i)$$

• **ex-post individual-rationality**: agents can withdraw from the mechanism at the end

 $U_i(f(heta), heta_i) \geq \hat{U}_i(heta_i)$, as about the second second

We can not force agents to participate in the mechanism. Let $\hat{u}_i(\theta_i)$ denote the (expected) utility to agent *i* with type θ_i of its outside option.

• ex ante individual-rationality: agents choose to participate before they know their own type

 $E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$

• interim individual-rationality: agents can withdraw once they know their own type

$$\mathsf{E}_{\theta_{-i}\in\Theta_{-i}}[u_i(f(\theta_i,\theta_{-i}),\theta_i)] \geq \hat{u}_i(\theta_i)$$

• ex-post individual-rationality: agents can withdraw from the mechanism at the end

 $u_i(f(heta), heta_i) \geq \hat{u}_i(heta_i)$ and the set t is a set u_i

Kate Larson

Mechanism Design

Direct Mechanisms

Definition

A direct mechanism is a mechanism where

$$S_i = \Theta_i$$
 for all i

and

$$g(\theta) = f(\theta)$$
 for all $\theta \in \Theta_1 \times \ldots \times \Theta_n$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Incentive Compatibility

Definition

A direct mechanism is **incentive compatible** if it has an equilibrium s* where

$$\mathbf{S}_i^*(\theta_i) = \theta_i$$

for all $\theta_i \in \Theta_i$ and for all *i*. That is, truth-telling by all agents is an equilibrium.

Definition

A direct mechanism is **strategy-proof** if it is incentive compatible and the equilibrium is a dominant strategy equilibrium.

ヘロン ヘアン ヘビン ヘビン

Incentive Compatibility

Definition

A direct mechanism is **incentive compatible** if it has an equilibrium s* where

$$\mathbf{S}_i^*(\theta_i) = \theta_i$$

for all $\theta_i \in \Theta_i$ and for all *i*. That is, truth-telling by all agents is an equilibrium.

Definition

A direct mechanism is **strategy-proof** if it is incentive compatible and the equilibrium is a dominant strategy equilibrium.

ヘロト ヘアト ヘビト ヘビト

Revelation Principle

Theorem

Suppose there exists a mechanism $M = (S_1, ..., S_n, g(\cdot))$ that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f. [Gibbard 73; Green & Laffont 77; Myerson 79]

"The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism." [McAfee & McMillan 87]

ヘロン 人間 とくほ とくほ とう

Revelation Principle

Theorem

Suppose there exists a mechanism $M = (S_1, ..., S_n, g(\cdot))$ that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f. [Gibbard 73; Green & Laffont 77; Myerson 79]

"The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism." [McAfee & McMillan 87]

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

- Construct mechanism M = (S, g) that implements $f(\theta)$ in dominant strategies. Then $g(s^*(\theta)) = f(\theta)$ for all $\theta \in \Theta$ where s^* is a dominant strategy equilibrium.
- ② Construct direct mechanism $M' = (\Theta, f(\Theta))$.
- By contradiction suppose

 $\exists \theta_i' \neq \theta_i \text{ s.t. } u_i(f(\theta_i', \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$

for some $\theta'_i \neq \theta_i$, some θ_{-i} .

If $g(\theta) = g(s^*(\theta))$ because $f(\theta) = g(s^*(\theta))$ this implies that

 $u_i(g(s_i^*(\theta_i'), s_{-i}^*(\theta_{-i})), \theta_i) > u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

which contradicts the strategyproofness of *s** in mechanism *M*.

- Construct mechanism M = (S, g) that implements $f(\theta)$ in dominant strategies. Then $g(s^*(\theta)) = f(\theta)$ for all $\theta \in \Theta$ where s^* is a dominant strategy equilibrium.
- **2** Construct direct mechanism $M' = (\Theta, f(\Theta))$.

By contradiction suppose

 $\exists \theta_i' \neq \theta_i \text{ s.t. } u_i(f(\theta_i', \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$

for some $\theta'_i \neq \theta_i$, some θ_{-i} .

If $g(\theta) = g(s^*(\theta))$ But, because $f(\theta) = g(s^*(\theta))$ this implies that

 $u_i(g(s_i^*(\theta_i'), s_{-i}^*(\theta_{-i})), \theta_i) > u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

which contradicts the strategyproofness of *s** in mechanism *M*.

- Construct mechanism M = (S, g) that implements $f(\theta)$ in dominant strategies. Then $g(s^*(\theta)) = f(\theta)$ for all $\theta \in \Theta$ where s^* is a dominant strategy equilibrium.
- **2** Construct direct mechanism $M' = (\Theta, f(\Theta))$.
- By contradiction suppose

$$\exists \theta_i' \neq \theta_i \text{ s.t. } u_i(f(\theta_i', \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$$

for some $\theta'_i \neq \theta_i$, some θ_{-i} .

But, because $f(\theta) = g(s^*(\theta))$ this implies that

 $u_i(g(s_i^*(\theta_i'), s_{-i}^*(\theta_{-i})), \theta_i) > u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

which contradicts the strategyproofness of s^* in mechanism M.

- Construct mechanism M = (S, g) that implements $f(\theta)$ in dominant strategies. Then $g(s^*(\theta)) = f(\theta)$ for all $\theta \in \Theta$ where s^* is a dominant strategy equilibrium.
- **2** Construct direct mechanism $M' = (\Theta, f(\Theta))$.
- By contradiction suppose

$$\exists \theta'_i \neq \theta_i \text{ s.t. } u_i(f(\theta'_i, \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$$

for some $\theta'_i \neq \theta_i$, some θ_{-i} .

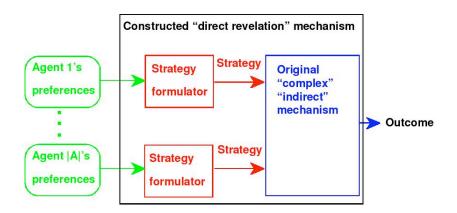
• But, because $f(\theta) = g(s^*(\theta))$ this implies that

 $u_i(g(s_i^*(\theta_i'), s_{-i}^*(\theta_{-i})), \theta_i) > u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$

which contradicts the strategyproofness of s^* in mechanism M.

Introduction Fundamentals Mechanism Design Problem Direct Mechanisms and the Revelation Principle

Revelation Principle: Intuition



Kate Larson Mechanism Design

イロン 不良 とくほう 不良 とうせい

• Literal interpretation: Need only study direct mechanisms

- A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
- If no direct mechanism can implement social choice function *f* then no mechanism can
- Useful because the space of possible mechanisms is huge

ヘロン ヘアン ヘビン ヘビン

-

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function *f* then no mechanism can
 - Useful because the space of possible mechanisms is huge

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function *f* then no mechanism can
 - Useful because the space of possible mechanisms is huge

・ロト ・ 理 ト ・ ヨ ト ・

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function *f* then no mechanism can
 - Useful because the space of possible mechanisms is huge

・ロト ・ 理 ト ・ ヨ ト ・

-

Practical Implications

Incentive-compatibility is "free"

• Any outcome implemented by mechanism *M* can be implemented by incentive-compatible mechanism *M'*

• "Fancy" mechanisms are unneccessary

• Any outcome implemented by a mechanism with complex strategy space *S* can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

・ロット (雪) () () () ()

Practical Implications

Incentive-compatibility is "free"

• Any outcome implemented by mechanism *M* can be implemented by incentive-compatible mechanism *M'*

• "Fancy" mechanisms are unneccessary

• Any outcome implemented by a mechanism with complex strategy space *S* can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

ヘロア 人間 アメヨア 人口 ア

Practical Implications

- Incentive-compatibility is "free"
 - Any outcome implemented by mechanism *M* can be implemented by incentive-compatible mechanism *M'*
- "Fancy" mechanisms are unneccessary
 - Any outcome implemented by a mechanism with complex strategy space *S* can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

ヘロア 人間 アメヨア 人口 ア

Quick Review

We now know

- What a mechanism is
- What it means for a SCF to be dominant-strategy implementable
- Revelation Principle

We do not yet know

• What types of SCF are dominant-strategy implementable

・ロト ・ 理 ト ・ ヨ ト ・

Quick Review

We now know

- What a mechanism is
- What it means for a SCF to be dominant-strategy implementable
- Revelation Principle

We do not yet know

• What types of SCF are dominant-strategy implementable

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Gibbard-Satterthwaite Impossibility

Theorem

Assume that

- *O* is finite and $|O| \ge 3$,
- each $o \in O$ can be achieved by SCF f for some θ , and
- Θ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and only if it is dictatorial.

Definition

SCF f is dictatorial if there is an agent i such that for all θ

$f(\theta) \in \{o \in O | u_i(o, \theta_i) \ge u_i(o', \theta_i) \forall o' \in O\}$

ヘロン ヘアン ヘビン ヘビン

Gibbard-Satterthwaite Impossibility

Theorem

Assume that

- *O* is finite and $|O| \ge 3$,
- each $o \in O$ can be achieved by SCF f for some θ , and
- Θ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and only if it is dictatorial.

Definition

SCF f is dictatorial if there is an agent i such that for all θ

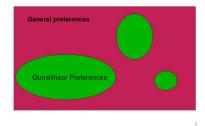
$$f(heta) \in \{ oldsymbol{o} \in oldsymbol{O} | u_i(oldsymbol{o}, heta_i) \geq u_i(oldsymbol{o}', heta_i) orall oldsymbol{o}' \in oldsymbol{O} \}$$

くロト (過) (目) (ヨ)

Introduction Fundamentals Mechanism Design Problem Direct Mechanisms and the Revelation Principle

Circumventing Gibbard-Satterthwaite

- Use a weaker equilibrium concept
- Design mechanisms where computing a beneficial manipulation is hard
- Randomization
- Restrict the structure of agents' preferences



Kate Larson Mechanism Design

イロン 不良 とくほう トレー

ъ