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Introduction

@ So far we have focused on computing optimal/equilibrium
strategies
@ Another approach: learn how to play a game

o Play the game many times

e Update your strategy based on experience
@ Why?
Some aspect of the game may be unknown to you
Other agents may not be playing in equilibrium
Computing an optimal strategy is hard
Learning is what people do
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Challenges

@ There are other agents in the environment

e Dynamic environment (true in single agent settings)
e What others are learning depend on what our agent is
learning

@ Complex global behaviour of the system
o Difficult to separate learning from teaching
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Goals of Multiagent Learning

Or What is meant by successful learning?
@ No clear answer
@ Descriptive Theories
@ Prescriptive Theories
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Repeated Games

Typically
@ Agents play a normal-form game (the stage game)
@ They see what happened (and get the payoffs)
@ They play again
o ...
Can be repeated finitely or infinitely

@ Extensive-form game with subgame-perfect equilibrium
being repetition of some NE of the stage game

@ Are there other equilibria?
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Finitely-repeated Prisoners’ Dilemma
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D 3,0 1,1

@ What will the agents do in the last round?
@ What will the agents do in the second last round?

o ...

@ What is the equilibrium?
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Infinitely repeated games

o Utility?
o If you add up the utility over infinitely many rounds, then
everyone gets infinity!

@ Limit of average payoff:

@ Discounted payoff:

> " stu(t) for some 6,0 < § < 1
t
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Infinitely repeated Prisoners’ Dilemma
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Tit-for-tat strategy:
@ Cooperate in first round

@ In every later round do the same thing that the other player
did in the previous round

Trigger strategy:
@ Cooperate as long as everyone cooperates
@ Once an agent defects, defect forever

Folk Theorem: Any utility vector can be realized in NE if and
only if it is feasible and enforceable.



Learning in Repeated Games
Stochastic Games

Fictitious Play

Early and simply learning rule

@ Initialize beliefs about opponent’s strategy
@ Repeat

e Play a best-response to assessed strategy of opponent
e Observe opponent’s actual play and update beliefs
accordingly

Note that agent is oblivious to the other agent’s utilities.
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Properties of Fictitious Play

Definition

An action profile a is in steady state if whenever a is played in
round t then it is played in round t + 1.

Theorem

If a pure strategy profile is a strict NE of a stage game, then it is
a steady state of fictitious play in the repeated game.




Learning in Repeated Games

Properties of Fictitious Play

An action profile a is in steady state if whenever a is played in
round t then it is played in round t + 1.

If a pure strategy profile is a strict NE of a stage game, then it is
a steady state of fictitious play in the repeated game.

If the empirical distribution of each agent’s strategies converges
in fictitious play then it converges to a Nash equilibrium.
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Regret:
’
Ri(a;, t) = =1 Z ui(ai,a_jy) — uiaiy,a_jy)
1<t/ <t-1

An algorithm has zero-regret if or each a;, the regret for a;
becomes non-positive as t goes to infinity (almost surely)
against any opponents
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Regret-based Learning

@ Regret matching:

et Ria)
: 2 aen RI(&)

@ Regret matching has zero regret.

@ If all players use regret matching, then play converges to
the set of weak correlated equilibria

@ Other types of regret-based learning have different
properties
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Targeted Learning

@ Assume that there is a limited set of possible opponents
e Try to do well against these

Example: is there a learning algorithm that

@ Learns to best-respond against any stationary opponent
(one that always plays the same mixed strategy), and

© Converges to a Nash equilibrium when playing against a
copy of itself (self-play)?
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Stochastic Games

@ Multiple states S = {S;,...,Sm}
e Each state, S; is a normal form game
@ After a round, random transition to another state
e Transition probabilities depend on state and action taken

@ Typically discount utilities over time

Note:
@ 1-state stochastic game = (infinitely) repeated game

@ 1-agent stochastic game = Markov Decision Process
(MDP)
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Stochastic Games

A stochastic game is (Q, N, A, P, R) where
@ Qs a finite set of states

@ A= A; x...x A, where A is afinite set of actions
available to player i

@ P:Qx Ax Qw~ [0,1]is the transition probability function
where P(q, a, q') is the probability of transitioning from
state g to state g’ when joint action a is played

@ R=n,....,mmwherer;: Q x A— R is a real valued payoff
function for player i



Stochastic Games

Review: Q-Learning in Single Agent Settings

@ Define Q(s, a) to be the value of taking action a in state s
(where by value we mean expected discounted sum of
future rewards)

@ Optimal policy 7*(s) = argmaxg Q(s, a)

@ Q-Learning algorithm

e For each s and a initialize Q(s, a)

@ Observe current state
e Loop

Select a and execute it

@ Receive immediate reward r

@ Observe new state s’

@ Update

Q(s,a) = Q(s,a) + a(r + ymaxy Q(s', @) — Q(s, a))



Stochastic Games

Minimax Q-Learning

@ Zero-sum stochastic games

@ Define Q7 (s, a) to be the value for agent i when both
agents follow strategy profile 7 starting in s and ais a joint
action.

@ Complications

e Now need to initialize 7 (typically uniform distribution)
o Update Qvalue: Qjt11(St; @i, a—it) = Qii(St, @i, a—it) +
alr +ymax; ming_, Qi((s, (), a_;) — Qi(St,ait,a_it))
e Update =:
7(s, ) = argmax.(s,(Ming_ >, (7'(s, &) Q(s, &)))
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Beyond Zero-Sum Stochastic Games
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