CS 798: Multiagent Systems Multiagent Learning

Kate Larson

Cheriton School of Computer Science University of Waterloo

イロン 不同 とくほ とくほ とう

Outline

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ → < Ξ →</p>

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
 - Play the game many times
 - Update your strategy based on experience
- Why?
 - Some aspect of the game may be unknown to you
 - Other agents may not be playing in equilibrium
 - Computing an optimal strategy is hard
 - Learning is what people do
 - . . .

くロト (過) (目) (日)

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
 - Play the game many times
 - Update your strategy based on experience
- Why?
 - Some aspect of the game may be unknown to you
 - Other agents may not be playing in equilibrium
 - Computing an optimal strategy is hard
 - Learning is what people do

• . . .

ヘロン 人間 とくほ とくほ とう

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
 - Play the game many times
 - Update your strategy based on experience
- Why?
 - Some aspect of the game may be unknown to you
 - Other agents may not be playing in equilibrium
 - Computing an optimal strategy is hard
 - Learning is what people do
 - . . .

ヘロン 人間 とくほ とくほ とう

Challenges

• There are other agents in the environment

- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
 - Complex global behaviour of the system
- Difficult to separate learning from teaching

	L	R
Τ	1,0	3,2
В	2,1	4,0

ヘロト 人間 ト ヘヨト ヘヨト

э

Challenges

• There are other agents in the environment

- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
 - Complex global behaviour of the system
- Difficult to separate learning from teaching

	L	R
Τ	1,0	3,2
В	2,1	4,0

ヘロト 人間 ト ヘヨト ヘヨト

Challenges

- There are other agents in the environment
 - Dynamic environment (true in single agent settings)
 - What others are learning depend on what our agent is learning
 - Complex global behaviour of the system
 - Difficult to separate learning from teaching

	L	R
Τ	1,0	3,2
В	2,1	4,0

Challenges

- There are other agents in the environment
 - Dynamic environment (true in single agent settings)
 - What others are learning depend on what our agent is learning
 - Complex global behaviour of the system
 - Difficult to separate learning from teaching

	L	R
Τ	1,0	3,2
В	2,1	4,0

ヘロト 人間 ト ヘヨト ヘヨト

э

Goals of Multiagent Learning

Or What is meant by successful learning?

- No clear answer
- Descriptive Theories
- Prescriptive Theories

くロト (過) (目) (日)

Goals of Multiagent Learning

Or What is meant by successful learning?

- No clear answer
- Descriptive Theories
- Prescriptive Theories

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again
- . . .

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

ヘロト ヘアト ヘビト ヘビト

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again
- . . .

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

ヘロン 人間 とくほ とくほ とう

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again

• . . .

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

ヘロン 人間 とくほ とくほ とう

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again

• . . .

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

イロト イポト イヨト イヨト

-

Finitely-repeated Prisoners' Dilemma

	С	D
С	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- . . .
- What is the equilibrium?

ヘロト ヘ戸ト ヘヨト ヘヨト

Finitely-repeated Prisoners' Dilemma

- What will the agents do in the last round?
- What will the agents do in the second last round?
- . . .
- What is the equilibrium?

イロン イボン イヨン イヨン

Finitely-repeated Prisoners' Dilemma

- What will the agents do in the last round?
- What will the agents do in the second last round?
- . . .
- What is the equilibrium?

イロト イポト イヨト イヨト

Finitely-repeated Prisoners' Dilemma

- What will the agents do in the last round?
- What will the agents do in the second last round?
- . . .
- What is the equilibrium?

ヘロト ヘアト ヘビト ヘビト

Finitely-repeated Prisoners' Dilemma

- What will the agents do in the last round?
- What will the agents do in the second last round?
- . . .
- What is the equilibrium?

イロト イポト イヨト イヨト

Infinitely repeated games

- Utility?
 - If you add up the utility over infinitely many rounds, then everyone gets infinity!
- Limit of average payoff:

$$\lim_{n\to\infty}\sum_{1\leq t\leq n}\frac{u(t)}{n}$$

Discounted payoff:

$$\sum_t \delta^t u(t) \text{ for some } \delta, 0 < \delta < 1$$

イロト 不得 とくほと くほとう

Infinitely repeated games

- Utility?
 - If you add up the utility over infinitely many rounds, then everyone gets infinity!
- Limit of average payoff:

$$\lim_{n\to\infty}\sum_{1\leq t\leq n}\frac{u(t)}{n}$$

Discounted payoff:

$$\sum_{t} \delta^{t} u(t)$$
 for some δ , 0 < δ < 1

ヘロト 人間 ト ヘヨト ヘヨト

Infinitely repeated Prisoners' Dilemma

	С	D
С	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round

Trigger strategy:

- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Infinitely repeated Prisoners' Dilemma

	С	D
С	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round

Trigger strategy:

- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Infinitely repeated Prisoners' Dilemma

	С	D
С	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round

Trigger strategy:

- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Infinitely repeated Prisoners' Dilemma

	С	D
С	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round

Trigger strategy:

- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Fictitious Play

Early and simply learning rule

- Initialize beliefs about opponent's strategy
- Repeat
 - Play a best-response to assessed strategy of opponent
 - Observe opponent's actual play and update beliefs accordingly

Note that agent is oblivious to the other agent's utilities.

ヘロト 人間 ト ヘヨト ヘヨト

Properties of Fictitious Play

Definition

An action profile a is in steady state if whenever a is played in round t then it is played in round t + 1.

Theorem

If a pure strategy profile is a strict NE of a stage game, then it is a steady state of fictitious play in the repeated game.

Theorem

If the empirical distribution of each agent's strategies converges in fictitious play then it converges to a Nash equilibrium.

イロト イポト イヨト イヨト

Properties of Fictitious Play

Definition

An action profile a is in steady state if whenever a is played in round t then it is played in round t + 1.

Theorem

If a pure strategy profile is a strict NE of a stage game, then it is a steady state of fictitious play in the repeated game.

Theorem

If the empirical distribution of each agent's strategies converges in fictitious play then it converges to a Nash equilibrium.

イロト イポト イヨト イヨト

Regret:

$$R_i(a_i, t) = \frac{1}{t-1} \left[\sum_{1 \le t' \le t-1} u_i(a_i, a_{-i,t'}) - u_i(a_{i,t'}, a_{-i,t'}) \right]$$

An algorithm has *zero-regret* if or each a_i , the regret for a_i becomes non-positive as t goes to infinity (almost surely) against any opponents

くロト (過) (目) (日)

э

Regret:

$$R_i(a_i, t) = \frac{1}{t-1} \left[\sum_{1 \le t' \le t-1} u_i(a_i, a_{-i,t'}) - u_i(a_{i,t'}, a_{-i,t'}) \right]$$

An algorithm has *zero-regret* if or each a_i , the regret for a_i becomes non-positive as t goes to infinity (almost surely) against any opponents

ヘロト 人間 ト ヘヨト ヘヨト

Regret matching:

$$\sigma_i^{t+1} = \frac{R^t(a_i)}{\sum_{a' \in A_i} R^t(a')}$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of *weak correlated equilibria*
- Other types of regret-based learning have different properties

くロト (過) (目) (日)

Regret matching:

$$\sigma_i^{t+1} = \frac{R^t(a_i)}{\sum_{a' \in A_i} R^t(a')}$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of *weak correlated equilibria*
- Other types of regret-based learning have different properties

ヘロト ヘアト ヘビト ヘビト

-

• Regret matching:

$$\sigma_i^{t+1} = \frac{R^t(a_i)}{\sum_{a' \in A_i} R^t(a')}$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of *weak correlated equilibria*
- Other types of regret-based learning have different properties

ヘロン 人間 とくほ とくほ とう

• Regret matching:

$$\sigma_i^{t+1} = \frac{R^t(a_i)}{\sum_{a' \in A_i} R^t(a')}$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of *weak correlated equilibria*
- Other types of regret-based learning have different properties

ヘロン 人間 とくほ とくほ とう

-

Targeted Learning

Assume that there is a limited set of possible opponents

• Try to do well against these

Example: is there a learning algorithm that

- Learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
- Converges to a Nash equilibrium when playing against a copy of itself (self-play)?

イロト イポト イヨト イヨト

Targeted Learning

- Assume that there is a limited set of possible opponents
 - Try to do well against these

Example: is there a learning algorithm that

- Learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
- Converges to a Nash equilibrium when playing against a copy of itself (self-play)?

イロン 不得 とくほ とくほとう

Stochastic Games

- Multiple states $S = \{S_1, \ldots, S_m\}$
 - Each state, S_i is a normal form game
- After a round, random transition to another state
 - Transition probabilities depend on state and action taken
- Typically discount utilities over time

Note:

- 1-state stochastic game = (infinitely) repeated game
- 1-agent stochastic game = Markov Decision Process (MDP)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Stochastic Games

A stochastic game is (Q, N, A, P, R) where

- Q is a finite set of states
- $A = A_1 \times \ldots \times A_n$ where A_i is a finite set of actions available to player *i*
- P: Q × A × Q → [0, 1] is the transition probability function where P(q, a, q') is the probability of transitioning from state q to state q' when joint action a is played
- *R* = *r*₁,..., *r_n* where *r_i* : *Q* × *A* → ℝ is a real valued payoff function for player *i*

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Review: Q-Learning in Single Agent Settings

- Define Q(s, a) to be the value of taking action a in state s (where by value we mean expected discounted sum of future rewards)
- Optimal policy $\pi^*(s) = \arg \max_a Q(s, a)$
- Q-Learning algorithm
 - For each s and a initialize Q(s, a)
 - Observe current state
 - Loop
 - Select a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update

 $Q(s, a) = Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Minimax Q-Learning

- Zero-sum stochastic games
- Define Q^π_i(s, a) to be the value for agent *i* when both agents follow strategy profile π starting in s and a is a joint action.
- Complications
 - Now need to initialize π (typically uniform distribution)
 - Update *Q* value: $Q_{i,t+1}(s_t, a_{i,t}, a_{-i,t}) = Q_{i,t}(s_t, a_{i,t}, a_{-i,t}) + \alpha(r + \gamma \max_i \min_{a_{-i}} Q_{i,t}(s, \pi_i(s), a_{-i}) Q_{i,t}(s_t, a_{i,t}, a_{-i,t}))$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

• Update π : $\pi(s, \cdot) = \arg \max_{\pi'(s, \cdot)} (\min_{a'_{-i}} \sum_{a'_i} (\pi'(s, a'_i)Q(s, a')))$

Beyond Zero-Sum Stochastic Games

イロト 不得 とくほ とくほとう