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Perfect Information Games

Extensive Form Games
aka Dynamic Games, aka Tree-Form Games

Extensive form games allows us to model situations where
agents take actions over time

Simplest type is the perfect information game
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Perfect Information Games

Perfect Information Game: G = (N, A, H, Z , α, ρ, σ, u)

N is the player set |N| = n
A = A1 × . . . × An is the action space
H is the set of non-terminal choice nodes
Z is the set of terminal nodes
α : H → 2A action function, assigns to a choice node a set
of possible actions
ρ : H → N player function, assigns a player to each
non-terminal node (player who gets to take an action)
σ : H × A → H ∪ Z , successor function that maps choice
nodes and an action to a new choice node or terminal
node where

∀h1, h2 ∈ H and a1, a2 ∈ A if h1 6= h2 then σ(h1, a1) 6= σ(h2, a2)

u = (u1, . . . , un) where ui : Z → R is utility function for
player i over Z
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Perfect Information Games

Tree Representation

The definition is really a tree description

Each node is defined by its history (sequence of nodes
leading from root to it)

The descendents of a node are all choice and terminal
nodes in the subtree rooted at the node.
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Perfect Information Games

Example

Sharing two items
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Perfect Information Games

Strategies

A strategy, si of player i is a function that assigns an action
to each non-terminal history, at which the agent can move.

Outcome: o(s) of strategy profile s is the terminal history
that results when agents play s

Important: The strategy definition requires a decision at
each choice node, regardless of whether or not it is
possible to reach that node given earlier moves
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Perfect Information Games

Example

1

2
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3,8

C

8,3

D
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B

5,5
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2,10

G

1,10

H

Strategy sets for the agents

S1 = {(A, G), (A, H), (B, G), (B, H)}

S2 = {(C, E), (C, F ), (D, E), (D, F )}
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Perfect Information Games

Example

We can transform an extensive form game into a normal form
game.

(C,E) (C,F) (D,E) (D,F)

(A,G) 3,8 3,8 8,3 8,3
(A,H) 3,8 3,8 8,3 8,3
(B,G) 5,5 2,10 5,5 2, 10
(B,H) 5,5 1,0 5,5 1,0
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Perfect Information Games

Nash Equilibria

Definition (Nash Equilibrium)

Strategy profile s∗ is a Nash Equilibrium in a perfect
information, extensive form game if for all i

ui(s
∗

i , s∗

−i) ≥ ui(s
′

i , s∗

−i )∀s′

i

Theorem

Any perfect information game in extensive form has a pure
strategy Nash equilibrium.

Intuition: Since players take turns, and everyone sees each
move there is no reason to randomize.
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Perfect Information Games

Example: Bay of Pigs

Krushev

Kennedy

Arm

-100,-100

Nuke

10,-10

Fold

-1,1

Retreat

What are the NE?
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Perfect Information Games

Subgame Perfect Equilibrium

Nash Equilibrium can sometimes be too weak a solution
concept.

Definition (Subgame)

Given a game G, the subgame of G rooted at node j is the
restriction of G to its descendents of h.

Definition (Subgame perfect equilibrium)

A strategy profile s∗ is a subgame perfect equilibrium if for all
i ∈ N, and for all subgames of G, the restriction of s∗ to G′ (G′

is a subgame of G) is a Nash equilibrium in G′. That is

∀i ,∀G′
, ui(s

∗

i |G′ , s∗

−i |G′) ≥ ui(s
′

i |G′ , s∗

−i |G′)∀s′

i
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Perfect Information Games

Existence of SPE

Theorem (Kuhn’s Thm)

Every finite extensive form game with perfect information has a
SPE.

You can find the SPE by backward induction.

Identify equilibria in the bottom-most trees

Work upwards
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Perfect Information Games

Centipede Game
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