CS 798: Multiagent Systems
Computing Equilibria

Kate Larson

Computer Science
University of Waterloo
Outline

1. Dominant and Dominated Strategies
2. Maxmin and Minmax Strategies
3. Solving Games
Dominant and Dominated Strategies

For the time being, let us restrict ourselves to pure strategies.

Definition

Strategy s_i is a strictly dominant strategy if for all $s'_i \neq s_i$ and for all s_{-i}

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$$

Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1, -1</td>
<td>-4, 0</td>
</tr>
<tr>
<td>D</td>
<td>0, -4</td>
<td>-3, -3</td>
</tr>
</tbody>
</table>

Dominant-strategy equilibria
Dominated Strategies

Definition

A strategy s_i is strictly dominated if there exists another strategy s_i' such that for all s_{-i}

$$u_i(s_i', s_{-i}) > u_i(s_i, s_{-i})$$

Definition

A strategy s_i is weakly dominated if there exists another strategy s_i' such that for all s_{-i}

$$u_i(s_i', s_{-i}) \geq u_i(s_i, s_{-i})$$

with strict inequality for some s_{-i}.
Dominated Strategies

Definition

A strategy s_i is strictly dominated if there exists another strategy s'_i such that for all s_{-i}

$$u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$$

Definition

A strategy s_i is weakly dominated if there exists another strategy s'_i such that for all s_{-i}

$$u_i(s'_i, s_{-i}) \geq u_i(s_i, s_{-i})$$

with strict inequality for some s_{-i}.
Example

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>M</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
<tr>
<td>D</td>
<td>-2,5</td>
<td>-3,2</td>
</tr>
</tbody>
</table>

D is strictly dominated

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>5,1</td>
<td>4,0</td>
</tr>
<tr>
<td>M</td>
<td>6,0</td>
<td>3,1</td>
</tr>
<tr>
<td>D</td>
<td>6,4</td>
<td>4,4</td>
</tr>
</tbody>
</table>

U and M are weakly dominated
Iterated Deletion of Strictly Dominated Strategies

Algorithm

- Let R_i be the removed set of strategies for agent i
- $R_i = \emptyset$
- Loop
 - Choose i and s_i such that $s_i \in A_i \setminus R_i$ and there exists s_i' such that
 $$u_i(s_i', s_{-i}) > u_i(s_i, s_{-i}) \forall s_{-i}$$
 - Add s_i to R_i
 - Continue
Example

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3,-3</td>
<td>7,-7</td>
<td>15,-15</td>
</tr>
<tr>
<td>D</td>
<td>9,-9</td>
<td>8,-8</td>
<td>10,-10</td>
</tr>
</tbody>
</table>
Some Results

Theorem

If a unique strategy profile s^ survives iterated deletion then it is a Nash equilibrium.*

Theorem

If s^ is a Nash equilibrium then it survives iterated elimination.*

Weakly dominated strategies cause some problems.
Some Results

Theorem

If a unique strategy profile s^* survives iterated deletion then it is a Nash equilibrium.

Theorem

If s^* is a Nash equilibrium then it survives iterated elimination.

Weakly dominated strategies cause some problems.
The definitions of domination (both strict and weak) can be easily extended to mixed strategies in the obvious way.

Theorem

Agent i’s pure strategy \(s_i \) is strictly dominated if and only if there exists another (mixed) strategy \(\sigma_i \) such that

\[u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \]

for all \(s_{-i} \).
Example

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>10,1</td>
<td>0,4</td>
</tr>
<tr>
<td>M</td>
<td>4,2</td>
<td>4,3</td>
</tr>
<tr>
<td>D</td>
<td>0,5</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Strategy \((\frac{1}{2}, 0, \frac{1}{2})\) strictly dominates pure strategy \(M\).

Theorem

If pure strategy \(s_i\) is strictly dominated, then so is any (mixed) strategy that plays \(s_i\) with positive probability.
Example

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>10,1</td>
<td>0,4</td>
</tr>
<tr>
<td>M</td>
<td>4,2</td>
<td>4,3</td>
</tr>
<tr>
<td>D</td>
<td>0,5</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Strategy \(\left(\frac{1}{2}, 0, \frac{1}{2} \right) \) strictly dominates pure strategy \(M \).

Theorem

If pure strategy \(s_i \) is strictly dominated, then so is any (mixed) strategy that plays \(s_i \) with positive probability.
Maxmin and Minmax Strategies

- A **maxmin strategy** of player i is one that maximizes its worst case payoff in the situation where the other agent is playing to cause it the greatest harm

 $$\arg \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$$

- A **minmax strategy** is the one that minimizes the maximum payoff the other player can get

 $$\arg \min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$$
Example

In 2-player games, maxmin value of one player is equal to the minmax value of the other player.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>2,3</td>
<td>5,4</td>
</tr>
<tr>
<td>D</td>
<td>0,1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Calculate maxmin and minmax values for each player (you can restrict to pure strategies).
Zero-Sum Games

- The maxmin value of one player is equal to the minmax value of the other player.
- For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin outcome is a Nash equilibrium. These are the only Nash equilibrium.
Zero-Sum Games

- The maxmin value of one player is equal to the minmax value of the other player
- For both players, the set of maxmin strategies coincides with the set of minmax strategies
- Any maxmin outcome is a Nash equilibrium. These are the only Nash equilibrium.
Zero-Sum Games

- The maxmin value of one player is equal to the minmax value of the other player.
- For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin outcome is a Nash equilibrium. These are the only Nash equilibrium.
Solving Zero-Sum Games

Let U_i^* be unique expected utility for player i in equilibrium. Recall that $U_1^* = -U_2^*$.

minimize U_1^*
subject to $\sum_{a_k \in A_2} u_1(a_j, a_k)s_2(a_k) \leq U_1^* \quad \forall a_j \in A_1$
$\sum_{a_k \in A_2} s_2(a_k) = 1$
$s_2(a_k) \geq 0 \quad \forall a_k \in A_2$

LP for 2’s mixed strategy in equilibrium.
Let U^*_i be unique expected utility for player i in equilibrium. Recall that $U^*_1 = -U^*_2$.

maximize \[U^*_1 \]
subject to \[\sum_{a_j \in A_1} u_1(a_j, a_k) s_1(a_j) \geq U^*_1 \quad \forall a_k \in A_2 \]
\[\sum_{a_j \in A_1} s_1(a_j) = 1 \]
\[s_1(a_j) \geq 0 \quad \forall a_j \in A_1 \]

LP for 1’s mixed strategy in equilibrium.
Two-Player General-Sum Games

LP formulation does not work for general-sum games since agents’ interests are no longer diametrically opposed.

Linear Complementarity Problem (LCP)
Find any solution that satisfies

\[
\begin{align*}
\sum_{a_k \in A_2} u_1(a_j, a_k) s_2(a_k) + r_1(a_j) &= U_1^* & \forall a_j \in A_1 \\
\sum_{a_j \in A_1} u_2(a_j, a_k) s_1(a_j) + r_2(a_k) &= U_2^* & \forall a_k \in A_2 \\
\sum_{a_j \in A_1} s_1(a_j) &= 1 & \sum_{a_k \in A_2} s_2(a_k) &= 1 \\
s_1(a_j) &\geq 0, s_2(a_k) \geq 0 & \forall a_j \in A_1, a_k \in A_2 \\
r_1(a_j) &\geq 0, r_2(a_k) \geq 0 & \forall a_j \in A_1, a_k \in A_2 \\
r_1(a_j) s_1(a_j) &= 0, r_2(a_k) s_2(a_k) &= 0 & \forall a_j \in A_1, a_k \in A_2
\end{align*}
\]