Cooperative Game Theory

Kate Larson

Cheriton School of Computer Science University of Waterloo

Outline

- Introduction
- Coalitional Games with Transferable Utility
- 3 Analyzing TU Games
- Other Extensions

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory
- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory
- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory
- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory
- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

Coalitional Games with Transferable Utility

A coalitional game with transferable utility is a pair (N, v) where

- N is a (finite) set of agents
- $v: 2^N \to \mathbb{R}$ is the *characteristic function*.
 - For each $S \subseteq N$, v(S) is the value that the agents can share amongst themselves.
 - $v(\emptyset) = 0$

Questions studied by cooperative game theory

- Which coalitions will form?
- How should the coalitions divide its value among its members?

Examples: Voting game

- 4 political parties A, B, C, and D which have 45, 25, 15, and 15 representatives respectively
- To pass a \$100 billion spending bill, at least 51 votes are needed
- If passed, then the parties get to decide how the money should be allocated. If not passed, then everyone gets 0.

- $N = A \cup B \cup C \cup D$
- $v: 2^N \to \mathbb{R}$ where

$$v(S) = \left\{ egin{array}{ll} \$100 & \mathsf{Billion} & \mathsf{if} \ |S| \geq 51 \\ 0 & \mathsf{otherwise} \end{array} \right.$$

Examples: Voting game

- 4 political parties A, B, C, and D which have 45, 25, 15, and 15 representatives respectively
- To pass a \$100 billion spending bill, at least 51 votes are needed
- If passed, then the parties get to decide how the money should be allocated. If not passed, then everyone gets 0.

- \bullet $N = A \cup B \cup C \cup D$
- $v: 2^N \to \mathbb{R}$ where

$$v(S) = \left\{ egin{array}{ll} \$100 \ \mbox{Billion} & \mbox{if} \ |S| \geq 51 \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Examples: Treasure Game

- N gold prospectors and more than 2|N| gold pieces
- Two prospectors are required to carry a gold piece

- N agents
- $v(S) = \lfloor \frac{|S|}{2} \rfloor$

Examples: Treasure Game

- N gold prospectors and more than 2|N| gold pieces
- Two prospectors are required to carry a gold piece

- N agents
- $v(S) = \lfloor \frac{|S|}{2} \rfloor$

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T\emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the grand coalition has the highest value among all coalitions.

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T\emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the grand coalition has the highest value among all coalitions.

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T\emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the grand coalition has the highest value among all coalitions.

Types of Games: Convex Games

Definition

A game
$$G = (N, v)$$
 is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

Types of Games: Convex Games

Definition

A game
$$G = (N, v)$$
 is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

Types of Games: Convex Games

Definition

A game
$$G = (N, v)$$
 is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that S ⊂ T, v(T) = 1
 - Note that this does not imply superadditivity.

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that $S \subset T$, v(T) = 1
 - Note that this does not imply superadditivity.

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that S ⊂ T, v(T) = 1
 - Note that this does not imply superadditivity.

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

- Payoff vector $x = (x_1, ..., x_n)$ where n = |N|.
- Desire
 - Feasibility: $\sum_{i \in N} x_i \le v(N)$
 - Efficiency: $\sum_{i \in N} x_i = v(N)$
 - Individual Rationality: $x_i \ge v(\{i\})$

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

- Payoff vector $x = (x_1, ..., x_n)$ where n = |N|.
- Desire
 - Feasibility: $\sum_{i \in N} x_i \le v(N)$
 - Efficiency: $\sum_{i \in N} x_i = v(N)$
 - Individual Rationality: $x_i \ge v(\{i\})$

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

- Payoff vector $x = (x_1, ..., x_n)$ where n = |N|.
- Desire
 - Feasibility: $\sum_{i \in N} x_i \le v(N)$
 - Efficiency: $\sum_{i \in N} x_i = v(N)$
 - Individual Rationality: $x_i \ge v(\{i\})$

Solution Concepts

Given a payoff vector, *x*, we are interested in understanding whether it is a *good* payoff vector.

- Stable: Would agents want to leave and form other coalitions? (Core)
- Fair: Does the payoff vector represent what each agent brings to the coalition? (Shapley value)

Solution Concepts

Given a payoff vector, *x*, we are interested in understanding whether it is a *good* payoff vector.

- Stable: Would agents want to leave and form other coalitions? (Core)
- Fair: Does the payoff vector represent what each agent brings to the coalition? (Shapley value)

The Core

Definition

A payoff vector is in the core of game (N, v) if and only if

$$\forall S \subseteq N, \sum_{i \in S} x_i \geq v(S)$$

Examples: Treasure Game

Examples: Voting Game

Existence of the Core: General characterization

Definition

A set of non-negative weights, λ , is balanced if

$$\forall i \in N, \sum_{S|i \in S} \lambda(S) = 1.$$

Theorem

A game (N, v) has a non-empty core if and only if for all balanced sets of weights, λ

$$v(N) \ge \sum_{S \subseteq N} \lambda(S) v(S).$$

Existence of the Core: General characterization

Definition

A set of non-negative weights, λ , is balanced if

$$\forall i \in N, \sum_{S|i \in S} \lambda(S) = 1.$$

Theorem

A game (N, v) has a non-empty core if and only if for all balanced sets of weights, λ

$$v(N) \geq \sum_{S \subseteq N} \lambda(S) v(S).$$

Existence of the Core: Specific Results

- Convex games have a non-empty core.
- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that $x_j = 0$ if j is not a veto-agent.

Existence of the Core: Specific Results

- Convex games have a non-empty core.
- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that $x_i = 0$ if j is not a veto-agent.

Existence of the Core: Specific Results

- Convex games have a non-empty core.
- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that $x_j = 0$ if j is not a veto-agent.

Fairness

- Interchangeable agents: i and j are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all S such that $i, j \notin S$
 - Symmetry: Interchangeable agents should receive the same payments, x_i = x_j
- **Dummy agent:** i is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: $\forall S, i \notin S, v(S \cup \{i\}) v(S) = v(\{i\})$
 - Dummy agents: $x_i = v(\{i\})$
- Additivity:

Fairness

- Interchangeable agents: i and j are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all S such that $i, j \notin S$
 - Symmetry: Interchangeable agents should receive the same payments, x_i = x_j
- **Dummy agent:** i is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: $\forall S, i \notin S, v(S \cup \{i\}) v(S) = v(\{i\})$
 - Dummy agents: $x_i = v(\{i\})$
- Additivity:

Fairness

- Interchangeable agents: i and j are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all S such that $i, j \notin S$
 - Symmetry: Interchangeable agents should receive the same payments, x_i = x_j
- **Dummy agent:** i is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: $\forall S, i \notin S, v(S \cup \{i\}) v(S) = v(\{i\})$
 - Dummy agents: $x_i = v(\{i\})$
- Additivity:

Shapley Value

There is a unique payoff vector that satisfies our fairness properties.

Definition

Given a game (N, v) the Shapley value of player i is

$$\phi(i) = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! [v(S \cup \{i\}) - v(S)].$$

Example: Treasure Game

Example: Voting Game

Relation Between the Core and Shapley Value

- In general, there is none.
- For convex games, the Shapley value is in the core.

Relation Between the Core and Shapley Value

- In general, there is none.
- For convex games, the Shapley value is in the core.

Alternative Solution Concepts

- \bullet ϵ -core, least core
- Nucleolous
- Kernel

Compact Representations

Alternative Solution Concepts

- \bullet ϵ -core, least core
- Nucleolous
- Kernel

Compact Representations

Power in Weighted Voting Games

• Shapley-Shubik Index : Let π be a permutation of the agents, and let $S_{\pi}(i)$ denote all agents j such that $\pi(j) < \pi(i)$

$$\phi(i) = \frac{1}{N!} \sum_{\pi} [v(S\pi(i) \cup \{i\}) - v(S\pi(i))]$$

Banzhaf Index

$$\beta(i) = \frac{1}{2^{|N|-1}} \sum_{S} [v(S \cup \{i\} - v(S))]$$

Power in Weighted Voting Games

• Shapley-Shubik Index : Let π be a permutation of the agents, and let $S_{\pi}(i)$ denote all agents j such that $\pi(j) < \pi(i)$

$$\phi(i) = \frac{1}{N!} \sum_{\pi} [v(S\pi(i) \cup \{i\}) - v(S\pi(i))]$$

Banzhaf Index

$$\beta(i) = \frac{1}{2^{|N|-1}} \sum_{S} [v(S \cup \{i\} - v(S))]$$

