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Bayesian Games

So far we have assumed that all players know what game they
are playing

Number of players

Actions available to each player

Payoffs associated with strategy profiles

L R

U 3,? -2, ?
D 0, ? 6, ?

Bayesian games (games of incomplete information) are used
to represent uncertainties about the game being played
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Bayesian Games

There are different possible representations.
Information Sets

N set of agents
G set of games

Same strategy sets for each game and agent

Π(G) is the set of all probability distributions over G
P(G) ∈ Π(G) common prior

I = (I1, . . . , In) are information sets (partitions over games)
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Example
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Extensive Form With Chance Moves
A special player, Nature, makes probabilistic moves.
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Epistemic Types

Epistemic types captures uncertainty directly over a game’s
utility functions.

N set of agents

A = (A1, . . . , An) actions for each agent

Θ = Θ1 × . . . × Θn where Θi is type space of each agent

p : Θ → [0, 1] is common prior over types

Each agent has utility function ui : A × Θ → R
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Example

BoS

2 agents

A1 = A2 =
{soccer, hockey}

Θ = (Θ1,Θ2) where
Θ1 = {H, S}, Θ2 = {H, S }

Prior: p1(H) = 1,
p2(H) = 2

3 , p2(S) = 1
3

Utilities can be captured by
matrix-form

θ2 = H
H S

H 2,2 0,0
S 0,0 1,1

θ2 = S
H S

H 2,1 0,0
S 0,0 1,2
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Strategies and Utility
A strategy si(θi) is a mapping from Θi to Ai . It specifies
what action (or what distribution of actions) to take for each
type.

Utility: ui(s|θi)

ex-ante EU (know nothing about types)

EU =
∑

θi∈Θi

p(θi)EUi(si |θi)

interim EU (know own type)

EU = EUi(s|θi) =
∑

θ
−i∈Θ

−i

p(θ−i |θi)
∑

a∈A

Πj∈Nsj(aj , θj))ui(a, θ−i , θi)

ex-post EU (know everyones type)
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Example

2 firms, 1 and 2, competing to create some product.

If one makes the product then it has to share with the other.

Product development cost is c ∈ (0, 1)

Benefit of having the product is known only to each firm
Type θi drawn uniformly from [0, 1]
Benefit of having product is θ2

i
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Bayes Nash Equilibrium

Definition (BNE)

Strategy profile s∗ is a Bayes Nash equilibrium if ∀i , ∀θi

EU(s∗

i , s∗

−i |θi) ≥ EU(s′

i , s∗

−i |θi)∀s′

i 6= s∗

i
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Example Continued

Let si(θi) = 1 if i develops product, and 0 otherwise.

If i develops product

ui = θ2
i − c

If it does not then

ui = θ2
i Pr(sj (θj) = 1)

Thus, develop product if and only if

θ2
i − c ≥ θ2

i Pr(sj(θj) = 1) ⇒ θi ≥

√

c
1 − Pr(sj (θj) = 1)
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Example Continued

Suppose θ̂1, θ̂2 ∈ (0, 1) are cutoff values in BNE.

If so, then Pr(sj(θj) = 1) = 1 − θ̂j

We must have

θ̂i ≥

√

c

θ̂j
⇒ θ̂2

i θ̂j = c

and
θ̂2

j θ̂i = c

Therefore
θ̂2

i θ̂j = θ̂2
j θ̂i

and so
θ̂i = θ̂j = θ∗ = c

1
3
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