Single Item Auctions

Kate Larson

Cheriton School of Computer Science
University of Waterloo
Outline

1. Introduction

2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions

3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping

4. Summary
Auctions

- Methods for allocating goods, tasks, resources,...
- Participants
 - auctioneer
 - bidders
- Enforced agreement between auctioneer and the winning bidder(s)
- Easily implementable (e.g. over the Internet)
- Conventions
 - Auction: one seller and multiple buyers
 - Reverse auction: one buyer and multiple sellers

Today's lecture will discuss the theory in the context of auctions, but this applies to reverse auctions as well (at least in 1-item settings).
Auction Settings

- **Private value**: the value of the good depends only on the agent’s own preferences
 - e.g. a cake that is not resold or showed off
- **Common value**: an agent’s value of an item is determined entirely by others’ values (valuation of the item is identical for all agents)
 - e.g. treasury bills
- **Correlated value (interdependent value)**: agent’s value for an item depends partly on its own preferences and partly on others’ value for it
 - e.g. auctioning a transportation task when bidders can handle it or reauction it to others
Auction Settings

- **Private value**: the value of the good depends only on the agent’s own preferences
 - e.g. a cake that is not resold or showed off

- **Common value**: an agent’s value of an item is determined entirely by others’ values (valuation of the item is identical for all agents)
 - e.g. treasury bills

- **Correlated value (interdependent value)**: agent’s value for an item depends partly on its own preferences and partly on others’ value for it
 - e.g. auctioning a transportation task when bidders can handle it or reauction it to others
Auction Settings

- **Private value**: the value of the good depends only on the agent’s own preferences
 - e.g. a cake that is not resold or showed off

- **Common value**: an agent’s value of an item is determined entirely by others’ values (valuation of the item is identical for all agents)
 - e.g. treasury bills

- **Correlated value (interdependent value)**: agent’s value for an item depends partly on its own preferences and partly on others’ value for it
 - e.g. auctioning a transportation task when bidders can handle it or reauction it to others
All Pay Auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. All bidders pay their last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

- **Best strategy:**
All Pay Auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. All bidders pay their last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

- **Best strategy:**
All Pay Auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. All bidders pay their last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids.

- **Best strategy:**
Outline

1. Introduction

2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions

3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping

4. Summary
Four Common Auctions

- English auction
- First-price, sealed-bid auction
- Dutch auction
- Vickrey auction
English auction
aka first-price open-cry auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. Highest bidder pays its last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

- **Best strategy:**

- **Variations:**
 - Auctioneer controls the rate of increase
 - Open-exit: Bidders have to openly declare exit with no re-entering possibilities
English auction
aka first-price open-cry auction

Protocol: Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. Highest bidder pays its last bid.

Strategy: Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

Best strategy:

Variations:
- Auctioneer controls the rate of increase
- Open-exit: Bidders have to openly declare exit with no re-entering possibilities
English auction
aka first-price open-cry auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. Highest bidder pays its last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

- **Best strategy:**

- **Variations:**
 - Auctioneer controls the rate of increase
 - Open-exit: Bidders have to openly declare exit with no re-entering possibilities
English auction
aka first-price open-cry auction

- **Protocol:** Each bidder is free to raise their bid. When no bidder is willing to raise, the auction ends and the highest bidder wins. Highest bidder pays its last bid.

- **Strategy:** Series of bids as a function of agent’s private value, prior estimates of others’ valuations, and past bids

- **Best strategy:**

- **Variations:**
 - Auctioneer controls the rate of increase
 - Open-exit: Bidders have to openly declare exit with no re-entering possibilities
First-price sealed-bid auction

- **Protocol**: Each bidder submits one bid without knowing others’ bids. The highest bidder wins the item at the price of its bid.

- **Strategy**: Bid as a function of agent’s private value and its prior estimates of others’ valuations.

- **Best strategy**:
First-price sealed-bid auction

- **Protocol**: Each bidder submits one bid without knowing others’ bids. The highest bidder wins the item at the price of it’s bid

- **Strategy**: Bid as a function of agent’s private value and its prior estimates of others’ valuations

- **Best strategy:**...
First-price sealed-bid auction

- **Protocol**: Each bidder submits one bid without knowing others’ bids. The highest bidder wins the item at the price of it’s bid
- **Strategy**: Bid as a function of agent’s private value and its prior estimates of others’ valuations
- **Best strategy**:
Example

Assume there are 2 agents (1 and 2) with values \(v_1, v_2 \) drawn uniformly from \([0, 1]\). Utility of agent \(i \) if it bids \(b_i \) and wins is \(u_i = v_i - b_i \).

Assume that agent 2’s bidding strategy is \(b_2(v_2) = v_2/2 \). How should 1 bid? (i.e. what is \(b(v_1) = z \)?).

\[
U_1 = \int_{z=0}^{2z} (v_1 - z) \, dz = (v_1 - z)2z = 2zv_1 - 2z^2
\]

Note: given \(z = b_2(v_2) = v_2/2 \), 1 only wins if \(v_2 < 2z \)

Therefore,

\[
\arg \max_z [2zv_1 - 2z^2] = v_1/2
\]

Similar argument for agent 2, assuming \(b_1(v_1) = v_1/2 \).
Example

Assume there are 2 agents (1 and 2) with values v_1, v_2 drawn uniformly from $[0, 1]$. Utility of agent i if it bids b_i and wins is $u_i = v_i - b_i$.

Assume that agent 2’s bidding strategy is $b_2(v_2) = v_2/2$. How should 1 bid? (i.e. what is $b(v_1) = z$?).

$$U_1 = \int_{z=0}^{2z} (v_1 - z)dz = (v_1 - z)2z = 2zv_1 - 2z^2$$

Note: given $z = b_2(v_2) = v_2/2$, 1 only wins if $v_2 < 2z$

Therefore,

$$\text{arg max}_z [2zv_1 - 2z^2] = v_1/2$$

Similar argument for agent 2, assuming $b_1(v_1) = v_1/2$.
Example

Assume there are 2 agents (1 and 2) with values v_1, v_2 drawn uniformly from $[0, 1]$. Utility of agent i if it bids b_i and wins is $u_i = v_i - b_i$.

Assume that agent 2’s bidding strategy is $b_2(v_2) = v_2/2$. How should 1 bid? (i.e. what is $b(v_1) = z$?).

$$U_1 = \int_{z=0}^{2z} (v_1 - z)dz = (v_1 - z)2z = 2zv_1 - 2z^2$$

Note: given $z = b_2(v_2) = v_2/2$, 1 only wins if $v_2 < 2z$

Therefore,

$$\text{arg max}_z [2zv_1 - 2z^2] = v_1/2$$

Similar argument for agent 2, assuming $b_1(v_1) = v_1/2$.
Example

Assume there are 2 agents (1 and 2) with values v_1, v_2 drawn uniformly from $[0, 1]$. Utility of agent i if it bids b_i and wins is $u_i = v_i - b_i$.

Assume that agent 2’s bidding strategy is $b_2(v_2) = v_2/2$. How should 1 bid? (i.e. what is $b(v_1) = z$?).

\[
U_1 = \int_{z=0}^{2z} (v_1 - z)dz = (v_1 - z)2z = 2zv_1 - 2z^2
\]

Note: given $z = b_2(v_2) = v_2/2$, 1 only wins if $v_2 < 2z$

Therefore,

\[
\arg \max_z [2zv_1 - 2z^2] = v_1/2
\]

Similar argument for agent 2, assuming $b_1(v_1) = v_1/2$.
Example

Assume there are 2 agents (1 and 2) with values v_1, v_2 drawn uniformly from $[0, 1]$. Utility of agent i if it bids b_i and wins is $u_i = v_i - b_i$.

Assume that agent 2’s bidding strategy is $b_2(v_2) = v_2/2$. How should 1 bid? (i.e. what is $b(v_1) = z$?).

$$U_1 = \int_{z=0}^{2z} (v_1 - z)dz = (v_1 - z)2z = 2zv_1 - 2z^2$$

Note: given $z = b_2(v_2) = v_2/2$, 1 only wins if $v_2 < 2z$

Therefore,

$$\arg \max_z [2zv_1 - 2z^2] = v_1/2$$

Similar arguement for agent 2, assuming $b_1(v_1) = v_1/2$.
Example

Assume that there are 2 risk-neutral bidders, 1 and 2.

- Agent 1 knows that 2’s value is 0 or 100 with equal probability
- 1’s value of 400 is common knowledge

What is a Nash equilibrium?
Dutch auction

Descending auction

- **Protocol:** Auctioneer continuously lowers the price until a bidder takes the item at the current price
- **Strategy:** Bid as a function of agent’s private value and prior estimates of others’ valuations
- **Best strategy:**
 - Dutch flower market, Ontario tobacco auctions, Filene’s basement,...
Dutch auction

Descending auction

- **Protocol:** Auctioneer continuously lowers the price until a bidder takes the item at the current price
- **Strategy:** Bid as a function of agent’s private value and prior estimates of others’ valuations
- **Best strategy:**
 - Dutch flower market, Ontario tobacco auctions, Filene’s basement,...
Dutch auction

Descending auction

- **Protocol:** Auctioneer continuously lowers the price until a bidder takes the item at the current price
- **Strategy:** Bid as a function of agent’s private value and prior estimates of others’ valuations
- **Best strategy:**
 - Dutch flower market, Ontario tobacco auctions, Filene’s basement,...
Dutch auction
Descending auction

- **Protocol:** Auctioneer continuously lowers the price until a bidder takes the item at the current price
- **Strategy:** Bid as a function of agent’s private value and prior estimates of others’ valuations
- **Best strategy:** Dutch flower market, Ontario tobacco auctions, Filene’s basement,...
Dutch (Aalsmeer) flower auction
Vickrey Auction
aka Second price, sealed bid auction

- **Protocol:** Each bidder submits one bid without knowing the others’ bids. The highest bidder wins and pays an amount equal to the second highest bid.

- **Strategy:** Bid as a function of agent’s private value and its prior estimates of others’ valuations.

- **Best strategy:**
 - Widely advocated for computational multiagent systems
 - Old (Vickrey 1961) but not widely used by humans
Vickrey Auction
aka Second price, sealed bid auction

- **Protocol:** Each bidder submits one bid without knowing the others’ bids. The highest bidder wins and pays an amount equal to the second highest bid.

- **Strategy:** Bid as a function of agent’s private value and its prior estimates of others’ valuations.

- **Best strategy:**
 - Widely advocated for computational multiagent systems
 - Old (Vickrey 1961) but not widely used by humans
Vickrey Auction
aka Second price, sealed bid auction

- **Protocol:** Each bidder submits one bid without knowing the others’ bids. The highest bidder wins and pays an amount equal to the second highest bid.

- **Strategy:** Bid as a function of agent’s private value and its prior estimates of others’ valuations.

- **Best strategy:**
 - Widely advocated for computational multiagent systems
 - Old (Vickrey 1961) but not widely used by humans
Vickrey Auction
aka Second price, sealed bid auction

- **Protocol:** Each bidder submits one bid without knowing the others’ bids. The highest bidder wins and pays an amount equal to the second highest bid.

- **Strategy:** Bid as a function of agent’s private value and its prior estimates of others’ valuations.

- **Best strategy:**
 - Widely advocated for computational multiagent systems
 - Old (Vickrey 1961) but not widely used by humans
Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.

- **Who pays?**
 - The bidder who takes the item away from the others (making the others worse off)
 - Others pay nothing

- **How much does the winner pay?**
 - The declared value that the good would have had for the others had the winner stayed home (second highest bid)
Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.

- **Who pays?**
 - The bidder who takes the item away from the others (making the others worse off)
 - Others pay nothing

- **How much does the winner pay?**
 - The declared value that the good would have had for the others had the winner stayed home (second highest bid)
Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.

- **Who pays?**
 - The bidder who takes the item away from the others (making the others worse off)
 - Others pay nothing

- **How much does the winner pay?**
 - The declared value that the good would have had for the others had the winner stayed home (second highest bid)
Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.

- **Who pays?**
 - The bidder who takes the item away from the others (making the others worse off)
 - Others pay nothing

- **How much does the winner pay?**
 - The declared value that the good would have had for the others had the winner stayed home (second highest bid)
Results for Private Value Auctions

- Dutch and first-price sealed-bid auctions are strategically equivalent
- For risk neutral agents, Vickrey and English auctions are strategically equivalent
 - Dominant strategies
- All four auctions allocate item efficiently
 - Assuming no reservation price for the auctioneer
Results for Private Value Auctions

- Dutch and first-price sealed-bid auctions are strategically equivalent
- For risk neutral agents, Vickrey and English auctions are strategically equivalent
 - Dominant strategies
- All four auctions allocate item efficiently
 - Assuming no reservation price for the auctioneer
Results for Private Value Auctions

- Dutch and first-price sealed-bid auctions are strategically equivalent.
- For risk neutral agents, Vickrey and English auctions are strategically equivalent.
 - Dominant strategies
- All four auctions allocate item efficiently.
 - Assuming no reservation price for the auctioneer.
Outline

1. Introduction

2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions

3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping

4. Summary
Revenue

Theorem (Revenue Equivalence)

Suppose that

* values are independently and identically distributed and
* all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard auction, such that the expected payment of a bidder with value zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

* Risk averse bidders: Dutch, first-price \geq Vickrey, English
* Risk seeking bidders: Dutch, first-price \leq Vickrey, English
Revenue

Theorem (Revenue Equivalence)

Suppose that

- values are independently and identically distributed and
- all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard auction, such that the expected payment of a bidder with value zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

- Risk averse bidders: Dutch, first-price ≥ Vickrey, English
- Risk seeking bidders: Dutch, first-price ≤ Vickrey, English
Revenue

Theorem (Revenue Equivalence)

Suppose that

- values are independently and identically distributed and
- all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard auction, such that the expected payment of a bidder with value zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

- Risk averse bidders: Dutch, first-price \geq Vickrey, English
- Risk seeking bidders: Dutch, first-price \leq Vickrey, English
Optimal Auctions
Outline

1. Introduction

2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions

3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping

4. Summary
Common Value Auctions

In a common value auction, the item has some unknown value and each agent has some partial information about the value. Each agent i has signal $X_i \in [0, \omega_i]$. The value V of the item is

$$V = v(X_1, \ldots, X_n)$$

Examples
- Art auctions and resale
- Construction companies effected by common events (e.g. weather)
- Oil drilling
Common Value Auctions

- At time of bidding the common value is unknown
- Bidders may have imperfect estimates about the value
- True value only observed after the auction has taken place
Winner’s Curse

- No agent knows for sure the true value of the item
- The winner is the agent who made the highest guess
- If bidders all had “reasonable” information about the value, then the average of all guesses should be correct
 - i.e. the winner has overbid!

Agents should shade their bids downward (even in English and Vicrey auctions).
Winner’s Curse

- No agent knows for sure the true value of the item
- The winner is the agent who made the highest guess
- If bidders all had “reasonable” information about the value, then the average of all guesses should be correct
 - i.e. the winner has overbid!

Agents should shade their bids downward (even in English and Vicrey auctions).
Results for Non-Private Value Auctions

- Dutch and first-price sealed-bid are strategically equivalent
- Vickrey and English are not strategically equivalent
- All four auctions are efficient

Theorem (Revenue Non-Equivalence)

With more than 2 bidders, the expected revenues are not the same:

\[
\text{English} \geq \text{Vickrey} \geq \text{Dutch} = \text{first-price sealed-bid}
\]
Results for Non-Private Value Auctions

- Dutch and first-price sealed-bid are strategically equivalent
- Vickrey and English are not strategically equivalent
- All four auctions are efficient

Theorem (Revenue Non-Equivalence)

With more than 2 bidders, the expected revenues are not the same:

\[\text{English} \geq \text{Vickrey} \geq \text{Dutch} = \text{first-price sealed-bid} \]
Results for Non-Private Value Auctions

- Dutch and first-price sealed-bid are strategically equivalent
- Vickrey and English are not strategically equivalent
- All four auctions are efficient

Theorem (Revenue Non-Equivalence)

With more than 2 bidders, the expected revenues are not the same:

\[\text{English} \geq \text{Vickrey} \geq \text{Dutch} = \text{first-price sealed-bid} \]
Results for Non-Private Value Auctions

- Dutch and first-price sealed-bid are strategically equivalent
- Vickrey and English are not strategically equivalent
- All four auctions are efficient

Theorem (Revenue Non-Equivalence)

With more than 2 bidders, the expected revenues are not the same:

\[\text{English} \geq \text{Vickrey} \geq \text{Dutch} = \text{first-price sealed-bid} \]
Outline

1. Introduction
2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions
3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping
4. Summary
Bidder Collusion

Example: $v_1 = 20$ and $v_i = 18$ for other bidders.

- Collusive agreement for English auction: 1 bids 6 and others bid 5. This is self-enforcing.
- Collusive agreement for Vickrey auction: 1 bids 20 and others bid 5. This is self-enforcing.
- In first-price or Dutch auction, if 1 bids below 18, others are motivated to break the collusion.
- Need to identify coalition parties.
Bidder Collusion

Example: $v_1 = 20$ and $v_i = 18$ for other bidders.

- Collusive agreement for English auction: 1 bids 6 and others bid 5. This is self-enforcing.
- Collusive agreement for Vickrey auction: 1 bids 20 and others bid 5. This is self-enforcing.

- In first-price or Dutch auction, if 1 bids below 18, others are motivated to break the collusion.
- Need to identify coalition parties.
Bidder Collusion

Example: $v_1 = 20$ and $v_i = 18$ for other bidders.

- Collusive agreement for English auction: 1 bids 6 and others bid 5. This is self-enforcing.
- Collusive agreement for Vickrey auction: 1 bids 20 and others bid 5. This is self-enforcing.
- In first-price or Dutch auction, if 1 bids below 18, others are motivated to break the collusion.
- Need to identify coalition parties.
Example: $v_1 = 20$ and $v_i = 18$ for other bidders.

- Collusive agreement for English auction: 1 bids 6 and others bid 5. This is self-enforcing.
- Collusive agreement for Vickrey auction: 1 bids 20 and others bid 5. This is self-enforcing.
- In first-price or Dutch auction, if 1 bids below 18, others are motivated to break the collusion.
- Need to identify coalition parties.
Outline

1. Introduction
2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions
3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping
4. Summary
Misbehaving Auctioneers

- Shill bidding is bidding to artificially increase an item’s price.
 - In theory, only a problem in non-private value auctions
 - English and all-pay auctions are vulnerable
 - Classic analysis ignores the possibility of shills
 - Vickrey, first-price, and Dutch are not vulnerable

- In Vickrey auction, auctioneer can overstate 2nd highest bid
- Auctioneer can refuse to sell once the auction has closed
Misbehaving Auctioneers

- Shill bidding is bidding to artificially increase an item’s price.
 - In theory, only a problem in non-private value auctions
 - English and all-pay auctions are vulnerable
 - Classic analysis ignores the possibility of shills
 - Vickrey, first-price, and Dutch are not vulnerable
- In Vickrey auction, auctioneer can overstate 2nd highest bid
- Auctioneer can refuse to sell once the auction has closed
Misbehaving Auctioneers

- Shill bidding is bidding to artificially increase an item’s price.
 - In theory, only a problem in non-private value auctions
 - English and all-pay auctions are vulnerable
 - Classic analysis ignores the possibility of shills
 - Vickrey, first-price, and Dutch are not vulnerable
- In Vickrey auction, auctioneer can overstate 2nd highest bid
- Auctioneer can refuse to sell once the auction has closed
Outline

1 Introduction
2 Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions
3 Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping
4 Summary
Undesirable Information Revelation

- Vickrey and English auctions reveal agents’ strategic marginal cost information since truthful bidding is a dominant strategy
 - Observed problems with subcontractors
- First-price and Dutch may not reveal this information as accurately
 - No dominant strategy and bidding decisions depend on beliefs of others
Undesirable Information Revelation

- Vickrey and English auctions reveal agents’ strategic marginal cost information since truthful bidding is a dominant strategy
 - Observed problems with subcontractors
- First-price and Dutch may not reveal this information as accurately
 - No dominant strategy and bidding decisions depend on beliefs of others
Outline

1. Introduction

2. Auction Protocols
 - Common Auction Protocols
 - Revenue and Optimal Auctions
 - Common Value Auctions

3. Vulnerabilities in Auctions
 - Bidder Collusion
 - Misbehaving Auctioneers
 - Information Revelation
 - Sniping

4. Summary
Sniping

Sniping is bidding very late in the auction in the hopes that other bidders do not have time to respond. This is a real issue in online auctions.

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Predicted contribution to late bidding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic hypotheses</td>
<td>All three strategic hypotheses suggest more late bidding on eBay than on Amazon, with a bigger effect for more experienced bidders. Plus (via the third point) more late bidding in categories in which expertise is important than in categories in which it is not.</td>
</tr>
<tr>
<td>Rational response to naïve English auction behavior or to shill bidders: bidders bid late to avoid bidding wars with incremental bidders.</td>
<td></td>
</tr>
<tr>
<td>Collusive equilibrium: bidders bid late to avoid bidding wars with other like-minded bidders.</td>
<td></td>
</tr>
<tr>
<td>Informed bidders protecting their information: e.g. late bidding by experts/dealers.</td>
<td></td>
</tr>
<tr>
<td>Non-strategic hypotheses</td>
<td>No difference between eBay and Amazon.</td>
</tr>
<tr>
<td>Bidders bid late because …</td>
<td></td>
</tr>
<tr>
<td>of procrastination;</td>
<td></td>
</tr>
<tr>
<td>search engines present soon-to-expire auctions first;</td>
<td></td>
</tr>
<tr>
<td>of a desire to retain flexibility to bid on other auctions offering the same item;</td>
<td></td>
</tr>
<tr>
<td>they remain unaware of the proxy bidding system;</td>
<td></td>
</tr>
<tr>
<td>of an increase in the willingness to pay over time caused by, e.g., an endowment effect; or because</td>
<td></td>
</tr>
<tr>
<td>bidders don’t like to leave bids “hanging.”</td>
<td></td>
</tr>
</tbody>
</table>
Sniping

Figure 1a–Cumulative distributions over time of bidders’ last bids
Sniping

Figure 1b—Cumulative distributions over time of auctions’ last bids
Summary

- Auctions are nontrivial but often analyzable
 - Important to understand merits and limitations
 - Unintuitive auctions may have better properties (i.e. Vickrey auction)
- Choice of a good auction depends on the setting in which the protocol is used