CS 798: Multiagent Systems Introduction to Social Choice

Kate Larson

Computer Science University of Waterloo

イロト 不得 とくほと くほとう

3

Arrows Theorem Restricted Domains

Outline

Kate Larson Social Choice

ヘロン 人間 とくほど くほどう

ъ

Properties for Voting Protocols

Property (Universality)

A voting protocol should work with any set of preferences.

Property (Transitivity)

A voting protocol should produce an ordered list of alternatives (social welfare function).

Property (Pareto efficiency)

If all agents prefer X to Y, then in the outcome X should be prefered to Y. That is, SWF f is pareto efficient if for any $o_1, o_2 \in O$, $\forall i \in N, o_1 >_i o_2$ then $o_1 >_f o_2$.

More Properties

Property (Independence of Irrelevant Alternatives (IIA))

Comparison of two alternatives depends only on their standings among agents' preferences, and not on the ranking of other alternatives. That is, SWF f is IIA if for any $o_1, o_2 \in O$

Property (No Dictators)

A SWF f has no dictator if $\neg \exists i \forall o_1, o_2 \in O, o_1 >_i o_2 \Rightarrow o_1 >_f o_2$

Arrows Theorem

Theorem (Arrow, 1951)

Let $|O| \ge 3$. Then any social welfare function f that is Pareto efficient and independent of irrelevant alternatives (IIA) is dictatorial.

Definition

A set $S \subseteq A$ is decisive for x over y whenever

• $x >_i y$ for all $i \in S$

• $x <_i y$ for all $i \in A \setminus S$

then x > y

Arrows Theorem

Theorem (Arrow, 1951)

Let $|O| \ge 3$. Then any social welfare function f that is Pareto efficient and independent of irrelevant alternatives (IIA) is dictatorial.

Definition

A set $S \subseteq A$ is decisive for x over y whenever

- $x >_i y$ for all $i \in S$
- $x <_i y$ for all $i \in A \setminus S$

then x > y

Single-Peaked Preferences

Definition

A binary relation \geq on a set of alternatives O is a linear order on O if it is reflexive, transitive, and total.

Definition

A preference relation \succeq is single-peaked with respect to the linear order \ge on O if there is an alternative $x \in O$ with the property that \succeq is increasing with respect to \ge on $\{y \in O | x \ge y\}$ and decreasing with respect to \ge on $\{y \in O | y \ge x\}$. That is

If
$$x \ge z > y$$
 then $z \succ y$

and

If
$$y > z \ge x$$
 then $z \succ y$.

Image: A matrix of the second seco

Single-Peaked Preferences

Definition

Let x_i denote agent $i \in A$'s "peak". Agent $h \in A$ is a median agent if

$$|\{a_i \in A | x_i \ge x_h\}| \ge \frac{|A|}{2}$$
 and $|\{a_i \in A | x_h \ge x_i\}| \ge \frac{|A|}{2}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Single-Peaked Preferences

Theorem

If agents all have single-peaked preferences with respect to the same linear order, then a Condorcet winner always exists. The Condorcet winner is x_h where h is the median agent and x_h is its "peak".

ヘロト ヘアト ヘビト ヘビト

э