Social Choice (Preference Aggregation)

January 26, 2006

K Larson - CS 886

Social choice theory

- Study of decision problems in which a group has to make the decision
- The decision affects all members of the group
- Their opinions should count!
- Applications:
 - Political elections
 - Other elections
 - Note that outcomes can be vectors
 - Allocation of money among agents, allocation of goods, tasks, resources

K Larson - CS 886

2.000

Social choice theory

- CS applications:
 - Multiagent planning [Ephrati&Rosenschein]
 - Computerized elections [Cranor&Cytron]
 - Note: this is not the same as electronic voting
 - Accepting a joint project, rating Web articles [Avery,Resnick&Zeckhauser]
 - Rating CDs...

K Larson - CS 886

Assumptions

- 1. Agents have preferences over alternatives
 - Agents can rank order the outcomes
 - a>b>c=d is read as "a is preferred to b which is preferred to c which is equivalent to d"
- 2. Voters are sincere
 - They truthfully tell the center their preferences
- 3. Outcome is enforced on all agents

Formal model

- Set of agents N={1,2,...,n}
- Set of outcomes O
- Set of strict total orders on O, L
- Social choice function $C:L^n \rightarrow O$
- Social welfare function $C:L^n \to L^-$ where L^- is the set of weak total orders on O

K Larson - CS 886

The problem

- Majority decision:
 - If more agents prefer a to b, then a should be chosen
- Two outcome setting is easy
 - Choose outcome with more votes!
- What happens if you have 3 or more possible alternatives?

K Larson - CS 886

CS 886

Case 1: Agents specify their top preference

Ballot

K Larson - CS 886

Canadian Election System

- Plurality Voting
 - One name is ticked on a ballot
 - One round of voting
 - One candidate is chosen

Is this a "good" system?

What do we mean by good? K ${\tt Larson}$ - ${\tt CS}$ 886 8

Example: Plurality

- 3 candidates
 - Lib, NDP, C
- 21 voters with the preferences
 - -10 Lib>NDP>C
 - -6 NDP>C>Lib
 - -5 C>NDP>Lib
- Result: Lib 10, NDP 6, C 5
 - But a majority of voters (11) prefer all other parties more than the Libs!

K Larson - CS 886 9

What can we do?

- Majority system
 - Works well when there are 2 alternatives
 - Not great when there are more than 2 choices
- Proposal:
 - Organize a series of votes between 2 alternatives at a time
 - How this is organized is called an agenda
 - Or a cup (often in sports)

K Larson - CS 886

10

Agendas

• 3 alternatives {a,b,c}

• Agenda a,b,c

Majority vote between a and b

Chosen alternative

KLarson - CS 886

Condorcet

- Proposed the following
 - Compare each pair of alternatives
 - Declare "a" is socially preferred to "b" if more voters strictly prefer a to b
- Condorcet Principle: If one alternative is preferred to <u>all other</u> candidates then it should be selected

K Larson - CS 886

Example: Condorcet

- 3 candidates
 - Lib, NDP, C
- 21 voters with the preferences
 - -10 Lib>NDP>C
 - -6 NDP>C>Lib
 - -5 C>NDP>Lib
- Result:
 - NDP win! (11/21 prefer them to Lib, 16/21 prefer them to C)

A Problem

- 3 candidates
 - -Lib, NDP, C
- 3 voters with the preferences
 - Lib>NDP>C
 - NDP>C>Lib
 - -C>Lib>NDP
- Result:
 - No Condorcet Winner

K Larson - CS 886

Borda Count

- Each ballot is a list of ordered alternatives
- On each ballot compute the rank of each alternative
- Rank order alternatives based on decreasing sum of their ranks

Borda Count

- Simple
- Always a Borda Winner
- BUT does not always choose Condorcet winner!
- 3 voters a:5, b:6, c:8, d:11 -2: b>a>c>d Therefore a wins

-1: a>c>d>b BUT b is the Condorcet winner

K Larson - CS 886

Inverted-order paradox

- Borda rule with 4 alternatives
- Each agent gives 1 points to best option, 2 to second best...
- Agents: 1, x>c>b>a
 - 2. a > x > c > b
 - 3. b > a > x > c
 - 4. x>c>b>a
 - 5. a > x > c > b
 - 6. b > a > x > c 7. x > c > b > a
- x=13, a=18, b=19, c=20
- Remove x: c=13, b=14, a=15

Borda rule vulnerable to irrelevant alternatives

• Three types of agents:

1. x > z > y (35%) 2. y > x > z (33%) 3. z > y > x (32%)

- Borda winner is x
- Remove z: Borda winner is y

K Larson - CS 886

21

Desirable properties for a voting protocol

- Universality
 - It should work with any set of preferences
- Transitivity
 - It should produce an ordered list of alternatives
 - That is, we work with social welfare function
- Pareto efficient
 - If all all agents prefer x to y then in the outcome x should be preferred to y
 - SWF W is pareto efficient if for any $o_1, o_2 \in O$, $\forall i o_1 \succ_i o_2 \text{ implies that } o_1 \succ_W o_2$

K Larson - CS 886

22

Desirable properties for a voting protocol

Independence of Irrelevant Alternatives (IIA)

- Comparison of two alternatives depends only on their standings among agents' preferences, not on the ranking of other alternatives
- SWF W is IIA if for any $\mathbf{o_1}, \mathbf{o_2} \in \mathbf{O},$ and two preference profiles \succ ', \succ ", \forall i $o_1 \succ_i o_2 \leftrightarrow o_1 \succ_i o_2$ implies that $O_1 \succ_{W(\succ)} O_2 \leftrightarrow O_1 \succ_{W(\succ)} O_2$
- No dictators
 - SWF W has no dictator if $\neg \exists I \forall o_1,o_2 (o_1 \succ_i o_2 \Rightarrow o_1 \succ_W o_2)$

K Larson - CS 886

Arrow's Theorem (1951)

• If there are 3 or more alternatives and a finite number of agents then there is **no** protocol which satisfies the 5 desired properties

Is there anything that can be done?

- Can we relax the properties?
- · No dictator
- Fundamental for a voting protocol
- Paretian
- Also seems to be pretty desirable
- Transitivity
 - Maybe you only need to know the top ranked alternative • Stronger form of Arrow's theorem says that you are still in
- trouble Independence
- Universality
 - Some hope here (1 dimensional preferences, spacial preferences)

K Larson - CS 886 25

Take-home Message

- Despair?
 - No ideal voting method
 - That would be boring!
- A group is more complex than an individual
- Weigh the pro's and con's of each system and understand the setting they will be used
- Do not believe anyone who says they have the best voting system out there!

K Larson - CS 886

Proof of Arrow's theorem (slide 1 of 3)

- Follows [Mas-Colell, Whinston & Green, 1995]
- Assuming ${\cal G}$ is Paretian and independent of irrelevant alternatives, we show that ${\cal G}$ is dictatorial
- **Def**. Set $S \subseteq A$ is decisive for x over y whenever

 - x >; y for all i ∈ S x <; y for all i ∈ A-S => x > y
- Consider: $x >_i y >_i z$ for all
- > x > y

 Lemma 1. If S is decisive for x over y, then for any other
 candidate z, S is decisive for x over z and for z over y

 Proof. Let S be decisive for x over y. Consider: x > 1 y > 2 for
 i S S and y > 1 z > 1 x for all i E A-S

 Since S is decisive for x over y, we have x > y

 Because y > 1 z for every agent, by the Pareto principle we have y > z

 Than but transitivity x > 2

 - Then, by transitivity, x > z

 By independence of irrelevant alternatives (y), x > z whenever every agent in S prefers x to z and every agent not in S prefers z to x. I.e., S is decisive for x over z
- To show that S is decisive for z over y, consider: $z >_i x >_i y$ for all $i \in S$ and $y >_i z >_i x$ for all $i \in A S$.

 Then x > y since S is decisive for x over y.

 - z > x from the Pareto principle and z > y from transitivity Thus S is decisive for z over $y \stackrel{CS 880}{y}$

Proof of Arrow's theorem

- (slide 2 of 3) Given that S is decisive for x over y, we deduced that S is decisive for x over z and z over y.
- Now reapply Lemma 1 with decision z over y as the hypothesis and conclude that
 - S is decisive for z over x
 - which implies (by Lemma 1) that S is decisive for y over x
- which implies (by Lemma 1) that S is decisive for y over x
 which implies (by Lemma 1) that S is decisive for y over z
 Thus: Lemma 2. If S is decisive for x over y, then for any candidates u and y, S is decisive for u over v (i.e., S is decisive)
 Lemma 3. For every S ⊆ A, either S or A-S is decisive (not both)
 Proof. Suppose x ≥, y for all i ∈ S and y ≥; x for all i ∈ A-S (only such cases need to be addressed, because otherwise the left side of the implication in the definition of decisiveness between candidates does not hold). Because either x > y or y > x, S is decisive or A-S is decisive

Proof of Arrow's theorem (slide 3 of 3)

- **Lemma 4.** If S is decisive and T is decisive, then $S \cap T$ is decisive Proof.
 - Let $S = \{i: z >_i y >_i x \} \cup \{i: x >_i z >_i y \}$ Let $T = \{i: y >_i x >_i z \} \cup \{i: x >_i z >_i y \}$ For $i \notin S \cup T$, let $y >_i z >_i x$

 - Now, since S is decisive, z > y
 Since T is decisive, x > z

 - Then by transitivity, x > ySo, by independence of irrelevant alternatives (z), $S \cap T$ is decisive for x over y.

- over y. (Note that if $x >_1 y$, then $i \in S \cap T$.)

 Thus, by Lemma 2, $S \cap T$ is decisive **Lemma 5.** If $S = S_1 \cup S_2$ (where S_1 and S_2 are disjoint and exhaustive) is decisive, then S_1 is decisive or S_2 is decisive. **Proof.** Suppose neither S_1 nor S_2 is decisive. Then $\sim S_1$ and $\sim S_2$ are decisive. By Lemma 4, $\sim S_1 \cap \sim S_2 = \sim S$ is decisive. But we assumed S is decisive. Contradiction 2
- Proof of Arrow's theorem
 - Clearly the set of all agents is decisive. By Lemma 5 we can keep splitting a decisive set into two subsets, at least one of which is decisive. Keep splitting the decisive set(s) further until only one agent remains in any, decisive set. That agent is a dictator. QED

Stronger version of Arrow's theorem

- In Arrow's theorem, social choice functional G outputs a ranking of the outcomes
- The impossibility holds even if only the highest ranked outcome is sought:
- **Thrm**. Let $|O| \ge 3$. If a social choice function f: R -> outcomes is monotonic and Paretian, then f is dictatorial
 - f is monotonic if [x = f(R) and x maintains its position in R'] => f(R') = x
 - x maintains its position whenever $x >_i y => x >_i' y$