Social Choice
(Preference Aggregation)

January 26, 2006
Social choice theory

• Study of decision problems in which a group has to make the decision
• The decision affects all members of the group
 – Their opinions should count!
• Applications:
 – Political elections
 – Other elections
 – Note that outcomes can be vectors
 • Allocation of money among agents, allocation of goods, tasks, resources...
Social choice theory

• CS applications:
 – Multiagent planning [Ephrati & Rosenschein]
 – Computerized elections [Cranor & Cytron]
 • Note: this is not the same as electronic voting
 – Accepting a joint project, rating Web articles [Avery, Resnick & Zeckhauser]
 – Rating CDs...
Assumptions

1. Agents have preferences over alternatives
 - Agents can rank order the outcomes
 - $a > b > c = d$ is read as “a is preferred to b which is preferred to c which is equivalent to d”

2. Voters are sincere
 - They truthfully tell the center their preferences

3. Outcome is enforced on all agents
Formal model

- Set of agents $N=\{1,2,\ldots,n\}$
- Set of outcomes O
- Set of strict total orders on O, L

- **Social choice function** $C:L^n \rightarrow O$

- **Social welfare function** $C:L^n \rightarrow L^-$ where L^- is the set of weak total orders on O
The problem

• Majority decision:
 – If more agents prefer a to b, then a should be chosen

• Two outcome setting is easy
 – Choose outcome with more votes!

• What happens if you have 3 or more possible alternatives?
Case 1: Agents specify their top preference

Ballot

X
Canadian Election System

• Plurality Voting
 – One name is ticked on a ballot
 – One round of voting
 – One candidate is chosen

Is this a “good” system?

What do we mean by good?
Example: Plurality

• 3 candidates
 – Lib, NDP, C

• 21 voters with the preferences
 – 10 Lib>NDP>C
 – 6 NDP>C>Lib
 – 5 C>NDP>Lib

• Result: Lib 10, NDP 6, C 5
 – But a majority of voters (11) prefer all other parties more than the Libs!
What can we do?

• Majority system
 – Works well when there are 2 alternatives
 – Not great when there are more than 2 choices

• Proposal:
 – Organize a series of votes between 2 alternatives at a time
 – How this is organized is called an agenda
 • Or a cup (often in sports)
Agendas

- 3 alternatives \{a, b, c\}
- Agenda a, b, c

Majority vote between a and b

Chosen alternative
Agenda paradox

- Binary protocol (majority rule) = cup
- Three types of agents:
 1. $x > z > y$ (35%)
 2. $y > x > z$ (33%)
 3. $z > y > x$ (32%)

- Power of agenda setter (e.g. chairman)
- Vulnerable to irrelevant alternatives (z)
Another problem: Pareto dominated winner paradox

Agents:
1. $x > y > b > a$
2. $a > x > y > b$
3. $b > a > x > y$

\[x \quad a \quad b \quad y \]

BUT
Everyone prefers x to y!
Case 2: Agents specify their complete preferences

Maybe the problem was with the ballots!

Ballot

X > Y > Z

Now have more information
Condorcet

• Proposed the following
 – Compare each pair of alternatives
 – Declare “a” is socially preferred to “b” if more voters strictly prefer a to b

• Condorcet Principle: If one alternative is preferred to all other candidates then it should be selected
Example: Condorcet

• 3 candidates
 – Lib, NDP, C

• 21 voters with the preferences
 – 10 Lib>NDP>C
 – 6 NDP>C>Lib
 – 5 C>NDP>Lib

• Result:
 – NDP win! (11/21 prefer them to Lib, 16/21 prefer them to C)
A Problem

- 3 candidates
 - Lib, NDP, C
- 3 voters with the preferences
 - Lib > NDP > C
 - NDP > C > Lib
 - C > Lib > NDP
- Result:
 - No Condorcet Winner
Borda Count

• Each ballot is a list of ordered alternatives
• On each ballot compute the rank of each alternative
• Rank order alternatives based on decreasing sum of their ranks

\[A > B > C \quad A: 4 \]
\[A > C > B \quad B: 8 \]
\[C > A > B \quad C: 6 \]
Borda Count

• Simple
• Always a Borda Winner
• BUT does not always choose Condorcet winner!
• 3 voters
 – 2: b > a > c > d
 – 1: a > c > d > b

Borda scores: a: 5, b: 6, c: 8, d: 11
Therefore a wins
BUT b is the Condorcet winner
Inverted-order paradox

- Borda rule with 4 alternatives
 - Each agent gives 1 points to best option, 2 to second best...
- Agents:
 1. $x > c > b > a$
 2. $a > x > c > b$
 3. $b > a > x > c$
 4. $x > c > b > a$
 5. $a > x > c > b$
 6. $b > a > x > c$
 7. $x > c > b > a$

- $x=13$, $a=18$, $b=19$, $c=20$
- Remove x: $c=13$, $b=14$, $a=15$
Borda rule vulnerable to irrelevant alternatives

• Three types of agents:

1. \(x > z > y \) (35%)
2. \(y > x > z \) (33%)
3. \(z > y > x \) (32%)

• Borda winner is \(x \)
• Remove \(z \): Borda winner is \(y \)
Desirable properties for a voting protocol

- **Universality**
 - It should work with any set of preferences

- **Transitivity**
 - It should produce an ordered list of alternatives
 - That is, we work with social welfare function

- **Pareto efficient**
 - If all all agents prefer \(x \) to \(y \) then in the outcome \(x \) should be preferred to \(y \)
 - \(\text{SWF} \ W \) is pareto efficient if for any \(o_1, o_2 \in O, \forall i \ o_1 \succ_i o_2 \) implies that \(o_1 \succ_W o_2 \)
Desirable properties for a voting protocol

Independence of Irrelevant Alternatives (IIA)

- Comparison of two alternatives depends only on their standings among agents’ preferences, not on the ranking of other alternatives
- SWF W is IIA if for any $o_1, o_2 \in O$, and two preference profiles \succ_i, \succ''_i, $\forall i \; o_1 \succ_i o_2 \iff o_1 \succ'_i o_2$ implies that $o_1 \succ_{W(\succ')} o_2 \iff o_1 \succ_{W(\succ'')} o_2$

- **No dictators**
 - SWF W has no dictator if
 $\neg \exists I \; \forall o_1, o_2 \; (o_1 \succ_i o_2 \Rightarrow o_1 \succ_{W} o_2)$
Arrow’s Theorem (1951)

- If there are 3 or more alternatives and a finite number of agents then there is no protocol which satisfies the 5 desired properties
Is there anything that can be done?

- Can we relax the properties?
- No dictator
 - Fundamental for a voting protocol
- Paretian
 - Also seems to be pretty desirable
- Transitivity
 - Maybe you only need to know the top ranked alternative
 - Stronger form of Arrow’s theorem says that you are still in trouble
- Independence
- Universality
 - Some hope here (1 dimensional preferences, spacial preferences)
Take-home Message

• Despair?
 – No ideal voting method
 – That would be boring!

• A group is more complex than an individual
• Weigh the pro’s and con’s of each system and understand the setting they will be used in

• Do not believe anyone who says they have the best voting system out there!
Proof of Arrow’s theorem (slide 1 of 3)

- Follows [Mas-Colell, Whinston & Green, 1995]
- Assuming \(G \) is Paretian and independent of irrelevant alternatives, we show that \(G \) is dictatorial
- **Def.** Set \(S \subseteq A \) is decisive for \(x \) over \(y \) whenever
 - \(x >_i y \) for all \(i \in S \)
 - \(x <_i y \) for all \(i \in A-S \)
 - \(\Rightarrow x > y \)
- **Lemma 1.** If \(S \) is decisive for \(x \) over \(y \), then for any other candidate \(z \), \(S \) is decisive for \(x \) over \(z \) and for \(z \) over \(y \)
- **Proof.** Let \(S \) be decisive for \(x \) over \(y \). Consider: \(x >_i y >_i z \) for all \(i \in S \) and \(y >_i z >_i x \) for all \(i \in A-S \)
 - Since \(S \) is decisive for \(x \) over \(y \), we have \(x > y \)
 - Because \(y >_i z \) for every agent, by the Pareto principle we have \(y > z \)
 - Then, by transitivity, \(x > z \)
 - By independence of irrelevant alternatives (\(y \)), \(x > z \) whenever every agent in \(S \) prefers \(x \) to \(z \) and every agent not in \(S \) prefers \(z \) to \(x \). I.e., \(S \) is decisive for \(x \) over \(z \)
- To show that \(S \) is decisive for \(z \) over \(y \), consider: \(z >_i x >_i y \) for all \(i \in S \) and \(y >_i z >_i x \) for all \(i \in A-S \)
 - Then \(x > y \) since \(S \) is decisive for \(x \) over \(y \)
 - \(z > x \) from the Pareto principle and \(z > y \) from transitivity
 - Thus \(S \) is decisive for \(z \) over \(y \) \(\odot \)
Proof of Arrow’s theorem

(slide 2 of 3)

- Given that S is decisive for x over y, we deduced that S is decisive for x over z and z over y.
- Now reapply Lemma 1 with decision z over y as the hypothesis and conclude that
 - S is decisive for z over x
 - which implies (by Lemma 1) that S is decisive for y over x
 - which implies (by Lemma 1) that S is decisive for y over z
 - Thus: Lemma 2. If S is decisive for x over y, then for any candidates u and v, S is decisive for u over v (i.e., S is decisive)

- Lemma 3. For every S ⊆ A, either S or A-S is decisive (not both)
- Proof: Suppose x >_i y for all i ∈ S and y >_i x for all i ∈ A-S (only such cases need to be addressed, because otherwise the left side of the implication in the definition of decisiveness between candidates does not hold). Because either x > y or y > x, S is decisive or A-S is decisive
Proof of Arrow’s theorem (slide 3 of 3)

- **Lemma 4.** If S is decisive and T is decisive, then $S \cap T$ is decisive

 - **Proof.**
 - Let $S = \{ i: z_i > y_i, x \} \cup \{ i: x_i > z_i, y \}$
 - Let $T = \{ i: y_i > x_i, z \} \cup \{ i: x_i > z_i, y \}$
 - For $i \not\in S \cup T$, let $y_i > z_i, x$
 - Now, since S is decisive, $z > y$
 - Since T is decisive, $x > z$
 - Then by transitivity, $x > y$
 - So, by independence of irrelevant alternatives (z), $S \cap T$ is decisive for x over y.
 - (Note that if $x_i > y$, then $i \in S \cap T$.)
 - Thus, by Lemma 2, $S \cap T$ is decisive

- **Lemma 5.** If $S = S_1 \cup S_2$ (where S_1 and S_2 are disjoint and exhaustive) is decisive, then S_1 is decisive or S_2 is decisive

 - **Proof.** Suppose neither S_1 nor S_2 is decisive. Then $\sim S_1$ and $\sim S_2$ are decisive. By Lemma 4, $\sim S_1 \cap \sim S_2 = \sim S$ is decisive. But we assumed S is decisive. Contradiction

- **Proof of Arrow’s theorem**
 - Clearly the set of all agents is decisive. By Lemma 5 we can keep splitting a decisive set into two subsets, at least one of which is decisive. Keep splitting the decisive set(s) further until only one agent remains in any decisive set. That agent is a dictator. QED
Stronger version of Arrow’s theorem

- In Arrow’s theorem, social choice functional G outputs a ranking of the outcomes
- The impossibility holds even if only the highest ranked outcome is sought:
- **Thrm.** Let $|O| \geq 3$. If a social choice function $f: R \rightarrow$ outcomes is monotonic and Paretian, then f is dictatorial
 - f is monotonic if $[x = f(R)$ and x maintains its position in $R'] \Rightarrow f(R') = x$
 - x maintains its position whenever $x >_i y \Rightarrow x > _{i'} y$