Mechanism Design

CS 886 Multiagent Systems University of Waterloo

Introduction

So far we have looked at

- Game Theory
 - Given a game we are able to analyze the strategies agents will follow
- Theory

 Given a set of agents'
 - Given a set of agents' preferences we can choose some outcome Ballot

Social Choice

X>Y>Z

Introduction

- Today, Mechanism Design
 - Game Theory + Social Choice
- Goal of Mechanism Design is to
 - Obtain some outcome
 - But agents are rational
- "Solution":
 - Define the rules of a game so that in equilibrium the agents do what we want
- CS Spin
 - Defining protocols for distributed systems

3

Example: London Bus System

(as of April 2004)

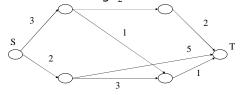
- 5 million passengers each day
- 7500 buses
- 700 routes

- The system has been privatized since 1997 by using competitive tendering
- Idea: Run an auction (mechanism) to allocate routes to companies

4

Example

• Selfish Routing 2



Want to find the least-cost route from S to T.

You do not know costs.

You do know that each links wants to maximize revenue.

How do you use this information to extract information needed to find least-cost path? 5

Fundamentals

- Set of possible outcomes, O
- Agents $i \in N$, |N| = n, each agent i has type $\theta_i \in \Theta_i$ Type captures all private information that is relevant to agent's decision making
- Utility $u_i(o, \theta_i)$, over outcome $o \in O$
- Recall: goal is to implement some system-wide solution
 - Captured by a social choice function

$$f{:}\Theta_1\times\ldots\times\Theta_n\to\mathcal{O}$$

 $\mathbf{f}(\boldsymbol{\theta}_1, \dots \boldsymbol{\theta}_n) = \mathbf{o}$ is a collective choice

Examples of social choice functions

- Voting: choose a candidate among a group
- Public project: decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation: allocate a single, indivisible item to one agent in a group

Mechanisms

- Recall: We want to implement a social choice function
 - Need to know agents' preferences
 - They may not reveal them to us truthfully
- Example:
 - 1 item to allocate, and want to give it to the agent who values it the most
 - If we just ask agents to tell us their preferences, they may lie

I like th bear the most!

No, I do!

8

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:

$$\begin{array}{c} M{=}(S_1,{\dots},S_n,g(\cdot))\\ \\ \nearrow \\ \text{Strategy spaces of agents} \end{array} \begin{array}{c} O\text{utcome function}\\ g{:}S_1{\times}{\dots}{\times}S_n{\to}O \end{array}$$

Implementation

• A mechanism $M=(S_1,...,S_n,g())$ implements social choice function $f(\theta)$ if there is an equilibrium strategy profile $s^*=(s_1^*,...,s_n^*)$ of the game induced by M such that

$$\begin{array}{l} -g(s_1^*(\theta_1),...,s_n^*(\theta_n)) = f(\theta_1,...,\theta_n) \\ \forall \ (\theta_1,...,\theta_n) \in \Theta_1 \mathbf{x}... \mathbf{x} \mathbf{\Theta}_n \end{array}$$

10

Implementation

- We did not specify the type of equilibrium in the definition
- Nash

 $u_i(s_i^*(\boldsymbol{\theta}_i),s^*_{.i}(\boldsymbol{\theta}_{.i}),\boldsymbol{\theta}_i) \geq u_i(s_i^*(\boldsymbol{\theta}_i),s^*_{.i}(\boldsymbol{\theta}_{.i}),\boldsymbol{\theta}_i), \ \forall \ i, \ \forall \ \boldsymbol{\theta}, \ \forall \ s_i^* \neq s_i^*$

• Bayes-Nash

 $\mathrm{E}[\mathrm{u}_{i}(s_{i}^{*}(\theta_{i}),s^{*}._{i}(\theta_{.i}),\theta_{i})] \geq \mathrm{E}[\mathrm{u}_{i}(s_{i}^{*}(\theta_{i}),s^{*}._{i}(\theta_{.i}),\theta_{i})], \ \forall \ i, \ \forall \ \theta, \ \forall \ s_{i}^{*} \neq s_{i}^{*}$

• Dominant

 $u_i(s_i^*(\boldsymbol{\theta}_i),s_{\cdot i}(\boldsymbol{\theta}_i),\boldsymbol{\theta}_i) \geq u_i(s_i^*(\boldsymbol{\theta}_i),s_{\cdot i}(\boldsymbol{\theta}_{\cdot i}),\boldsymbol{\theta}_i), \ \forall \ i, \ \forall \ \boldsymbol{\theta}, \ \forall \ s_i^* \neq s_i^*, \ \forall \ s_{\cdot i}$

11

Direct Mechanisms

- Recall that a mechanism specifies the strategy sets of the agents
 - These sets can contain complex strategies
- Direct mechanisms:
 - Mechanism in which $S_i=\Theta_i$ for all i, and $g(\theta)=f(\theta)$ for all $\theta\in\Theta_1\times...\times\Theta_n$
- Incentive compatible:
 - A direct mechanism is incentive compatible if it has an equilibrium s^* where $s^*_i(\theta_i)=\theta_i$ for all $\theta_i\in\Theta_i$ and all i
 - truth telling by all agents is an equilibrium
 - Strategy-proof if dominant-strategy equilibrium

Dominant Strategy Implementation

- Is a certain social choice function implementable in dominant strategies?
 - In principle we would need to consider all possible mechanisms
- Revelation Principle
 - Suppose there exists a mechanism $M=(S_1,...,S_n,g(\cdot))$ that implements social choice function $f(\cdot)$ in dominant strategies.
 - Then there is a direct strategy-proof mechanism, M', which also implements f().

13

Revelation Principle

"the computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism" [McAfee&McMillian 87]

• Vickrey auction and English auction

14

Revelation Principle: Proof

- M=(S₁,...,S_n,g()) implements SCF f() in dom str.
 - Construct direct mechanism $M'=(\Theta^n,f(\theta))$
 - By contradiction, assume

 $\exists \theta_i^{'} \neq \theta_i \text{ s.t. } u_i(f(\theta_i^{'}, \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$ for some $\theta_i^{'} \neq \theta_i$, some θ_{-i} .

– But, because $f(\theta)=g(s^*(\theta))$, this implies $u_i(g(s_i^*(\theta_i'),s_{-i}^*(\theta_{-i})),\theta_i)>u_i(g(s^*(\theta_i),s^*(\theta_{-i})),\theta_i)$

Which contradicts the strategy proofness of s^{\ast} in $\mbox{\em M}$

15

Revelation Principle: Intuition Constructed "direct revelation" mechanism Agent 1's Strategy Original "complex preferences formulato "indirect" mechanism Outcome Strategy Agent IAI's preference 16

Theoretical Implications

- Literal interpretation: Need only study direct mechanisms
 - This is a smaller space of mechanisms
 - Negative results
 - If no direct mechanism can implement SCF f() then no mechanism can do it
 - Analysis tool:
 - Best direct mechanism gives us an upper bound on what we can achieve with an indirect mechanism
 - Analyze all direct mechanisms and choose the best one

17

Practical Implications

- Incentive-compatibility is "free" from an implementation perspective
- BUT!!!
 - A lot of mechanisms used in practice are not direct and incentive-compatible
 - Maybe there are some issues that are being ignored here

Quick review

- · We now know
 - What a mechanism is
 - What is means for a SCF to be dominant strategy implementable
 - Implementable in dominant strategies ⇒ implementable by a direct incentivecompatible mechanism
- We do not know
 - What types of SCF are dominant-strategy implementable

Gibbard-Satterthwaite Thm

- Assume
 - \mathcal{O} is finite and $|\mathcal{O}|$ ≥ 3
 - Each $o \in \mathcal{O}$ can be achieved by social choice function f() for some θ

Then:

f() is truthfully implementable in dominant strategies \leftrightarrow f() is dictatorial

Circumventing G-S • Use a weaker equilibrium concept

- - Nash, Bayes-Nash
- Design mechanisms where computing a beneficial manipulation is hard
 - Many voting mechanisms are NP-hard to manipulate (or can be made NP-hard with small "tweaks) [Bartholdi, Tovey, Trick 89] [Conitzer, Sandholm 03]
- Randomization

Almost need this much

• Agents' preferences have special structure

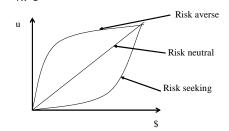
Quasi-Linear Preferences

- Outcome: o=(x,t₁,...,t_n)
 - x is a "project choice"
 - t_i is a "monetary" transfer
- Utility of agent i:
 - $-U_i(o,\theta_i)=u_i(x,\theta_i)-f(t_i)$
 - Preference of x is independent from the payment
 - Can choose to reward or punish by a monetary amount

22

Quasi-linear preferences

- $U_i(o,\theta_i)=u_i(x,\theta_i)-f_i(t_i)$
- f_i() gives i's risk attitude



23

SCF and quasi-linear settings

- $f:\Theta \rightarrow (x(\Theta),t(\Theta))$
- SCF f is efficient if for all types $\theta = (\theta_1, ..., \theta_n)$
 - $\sum_{i=1}^{n} u_i(x(\theta), \theta_i) \ge \sum_{i=1}^{n} u_i(x'(\theta), \theta_i) \ \forall \ x'(\theta)$
 - Aka social welfare maximizing
- SCF f is budget-balanced if $\sum_{i=1}^{n} t_i(\theta) = 0$
- SCF f is weakly budget-balanced if $\sum_{i=1}^{n} t_i(\theta) \ge 0$

Mechanisms and quasi-linear utilities

- M=(S₁,...,S_n,(x(S),t(S))
- Valuation for choice x v_i(x)=u_i(x,θ_i)
- Agents reveal their valuation functions in a direct mechanism
 - v'_i denotes the valuation that agent i declares to the mechanism (may be different from true valuation v_i)
 - v=(v'₁,...,v'_n)

Properties of mechanisms

- **Truthful**: ∀ i ∀ v_i, the equilibrium strategy for agent i is to adopt $v_i'=v_i$
- Efficient: Mechanism selects choice x such that \forall I \forall v_i \forall x' $\sum_i v_i(x) \ge \sum_i v_i(x')$
- Budget balanced: $\forall v' \sum_i t_i(v') = 0$
- Individually rational: $v_i(s^*(v))-t_i(s(v)) \ge$ 0 where S* is the equilibrium

Groves Mechanisms

[Groves 1973]

• A Groves mechanism,

 $M=(S_1,...,S_n, (x,t_1,...,t_n))$ is defined by

- Choice rule $x^*(\theta')$ = argmax_x $\sum_i v_i(x,\theta_i')$
- Transfer rules

• $t_i(\theta') = h_i(\theta_{-i}') - \sum_{i \neq j} v_i(x^*(\theta'), \theta'_i)$

where $h_i(\cdot)$ is an (arbitrary) function that **does not depend** on the reported type θ_i of agent i

Groves Mechanisms

- Thm: Groves mechanisms are strategyproof and efficient (We have gotten around Gibbard-Satterthwaite!)
- Proof: Agent i's utility for strategy θ_i , given θ_{-i} from agents j≠i is

 $U_i(\theta_i) = v_i(x^*(\theta), \theta_i) - t_i(\theta)$

 $= v_i(x^*(\theta'), \theta_i) + \sum_{j \neq i} v_j(x^*(\theta'), \theta'_j) - h_i(\theta'_{-i})$

Ignore $h_i(\theta_{-i})$. Notice that

 $x^*(\theta') = \operatorname{argmax} \sum_i v_i(x, \theta'_i)$

i.e. it maximizes the sum of reported values.

Therefore, agent i should announce $\theta_{i}^{'}=\theta_{i}$ to maximize its own payoff

Thm: Groves mechanisms are unique (up to $h_i(\theta_i)$)

VCG Mechanism

(aka Clarke mechanism aka Pivotal mechanism)

• Def: Implement efficient outcome,

 $x^* = \max_{x} \sum_{i} v_i(x, \theta_i)$

Compute transfers

$$t_{i}(\theta') = \sum_{j \neq i} v_{j}(x^{-i}, \theta'_{j}) - \sum_{j \neq i} v_{j}(x^{*}, \theta'_{i})$$

Where $x^{-i} = \max_{x} \sum_{i \neq j} v_i(x, \theta_i')$

VCG are efficient and strategy-proof

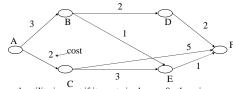
Agent's equilibrium utility is:

$$u_i(\boldsymbol{x}^{\star},\boldsymbol{t}_i,\boldsymbol{\theta}_i) \text{=} v_i(\boldsymbol{x}^{\star},\boldsymbol{\theta}_i) \text{-} [\boldsymbol{\Sigma}_{j\neq i} \ v_j(\boldsymbol{x}^{\text{-}i},\boldsymbol{\theta}_j) \ \text{-} \boldsymbol{\Sigma}_{j\neq i} v_j(\boldsymbol{x}^{\star},\boldsymbol{\theta}_j)]$$

=
$$\sum_{j} v_{j}(x^{*}, \theta_{j}) - \sum_{j \neq i} v_{j}(x^{*}, \theta_{j})$$

= marginal contribution to the welfare of the system

Example: Selfish Routing



Agent's utility is –cost if its route is chosen, 0 otherwise

 $x(v)=argmax \sum_{i} v_{i}(x) = ABEF$ Payments:

 $T_{AC} = 5-5=0$ Payments (Pivotal Agents):

T_{AB}=2-6=-4 (paid 4 for its contribution) $T_{CE} = 5-5=0$

 $T_{BD} = 5-5=0$ T_{BE}=4-6=-2 (paid 2 for its contribution)

 $T_{DF} = 5-5=0$ T_{EF}=4-7=-3 (paid 3 for its contribution)

 $T_{DF} = 5 - 5 = 0$ "Market Power"

Example: Building a pool • The cost of building the pool is \$300

- If together all agents value the pool more than \$300 then it will be built
- Clarke Mechanism:
 - Each agent announces their value, \mathbf{v}_{i}
 - If $\sum v_i \ge 300$ then it is built and each pays 100
 - Payments $t_i(\theta_i') = \sum_{j \neq i} v_j(x^{-i}, \theta_j') \sum_{j \neq i} v_j(x^*, \theta_i')$ if built, 0 otherwise

v1=50, v2=50, v3=250 Pool should be built

†₁=(250+50)-(250+50)=0 †₂=(250+50)-(250+50)=0 †₃=(0)-(100)=-100

Not budget balanced

Example: Vickrey Auction

- Highest bidder gets item, and pays second highest amount
- Also a VCG mechanism
 - Allocation rule: get item if b_i=max_i[b_i]
 - Every agent pays

$$t_{i}(\theta_{i}^{'}) = \sum_{j \neq i} v_{j}(x^{-i}, \theta_{j}^{'}) - \sum_{j \neq i} v_{j}(x^{*}, \theta_{i}^{'})$$

$$\max_{j \neq i} [b_{j}] \text{ if } i \text{ is not the highest bidder, 0 if it is}$$