# CS 486/686: Introduction to Artificial Intelligence

Introduction

#### Introduction

- So far almost everything we have looked at has been in a singleagent setting
  - Today Multiagent Decision Making!
- For participants to act optimally, they must account for how others are going to act
- We want to
  - Understand the ways in which agents interact and behave
  - Design systems so that agents behave the way we would like them to

**Hint for the final exam**: MAS is my main research area. I like MAS problems. I even enjoy marking MAS questions. There *will* be a MAS question on the exam.

#### Self-Interest

- We will focus on self-interested MAS
- Self-interested does not necessarily mean
  - Agents want to harm others
  - Agents only care about things that benefit themselves
- Self-interested means
  - Agents have their own description of states of the world
  - Agents take actions based on these descriptions

#### What is Game Theory?

- The study of games!
  - Bluffing in poker
  - What move to make in chess
  - How to play Rock-Paper-Scissors

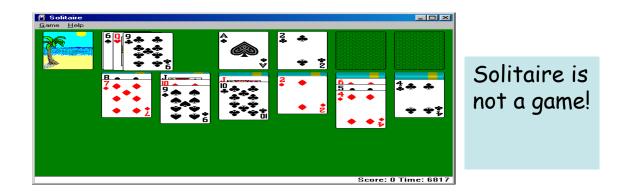


#### But also

- auction design
- strategic deterrence
- election laws
- coaching decisions
- routing protocols
- •

#### What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
  - Group: Must have more than 1 decision maker
    - Otherwise, you have a decision problem, not a game



#### What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
  - Interaction: What one agent does directly affects at least one other
  - **Strategic**: Agents take into account that their actions influence the game
  - Rational: Agents chose their best actions

#### Example

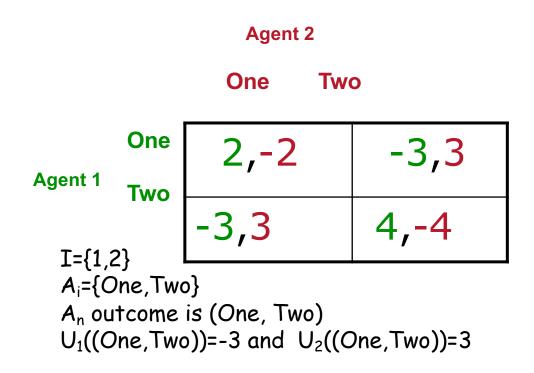


- Decision Problem
  - Everyone pays their own bill
- Game
  - Before the meal, everyone decides to split the bill evenly

## Strategic Game (Matrix Game, Normal Form Game)

- Set of agents: I={1,2,.,,,N}
- Set of actions: A<sub>i</sub>={a<sub>i</sub><sup>1</sup>,...,a<sub>i</sub><sup>m</sup>}
- Outcome of a game is defined by a profile a=(a<sub>1</sub>,...,a<sub>n</sub>)
- Agents have preferences over outcomes
  - Utility functions ui:A->R

#### Examples



Zero-sum game. ∑<sub>i=1</sub><sup>n</sup> u<sub>i</sub>(o)=0



#### Examples

BoS

В

B 2,1 0,0 S 0,0 1,2





S

**Coordination Game** 

Chicken

T -1,-1 10,0 C 0,10 5,5





**Anti-Coordination Game** 

#### Example: Prisoners' Dilemma







Confess

Don't Confess

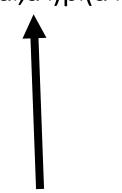
Confess

Don't Confess

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

#### Playing a Game

- Agents are rational
  - Let pi be agent i's belief about what its opponents will do
  - Best response: ai=argmax∑a-i ui(ai,a-i)pi(a-i)



Notation Break:  $a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_n)$ 

#### Dominated Strategies

• a'i strictly dominates strategy ai if

$$u_i(a_i', a_{-i}) > u_i(a_i, a_{-i}) \forall a_{-i}$$

A rational agent will never play a dominated strategy!

### Example

 Confess
 Don't Confess

 Confess
 -5,-5
 0,-10

 Don't Confess
 -10,0
 -1,-1

 Confess
 -1,-1
 -1,-1



### Strict Dominance Does Not Capture the Whole Picture

|   | Α   | В   | С   |
|---|-----|-----|-----|
| Α | 0,4 | 4,0 | 5,3 |
| В | 4,0 | 0,4 | 5,3 |
| C | 3,5 | 3,5 | 6,6 |

#### Nash Equilibrium

**Key Insight**: an agent's best-response depends on the actions of other agents

An action profile a\* is a **Nash equilibrium** if no agent has incentive to change given that others do not change

$$\forall i u_i(a_i^*, a_{-i}^*) \ge u_i(a_i', a_{-i}^*) \forall a_i'$$

#### Nash Equilibrium

Equivalently, a\* is a N.E. iff

$$\forall i a_i^* = \arg\max_{a_i} u_i(a_i, a_{-i}^*)$$

|   | Α   | В   | С   |
|---|-----|-----|-----|
| A | 0,4 | 4,0 | 5,3 |
| В | 4,0 | 0,4 | 5,3 |
| C | 3,5 | 3,5 | 6,6 |

(C,C) is a N.E. because

$$u_1(C,C) = \max \begin{bmatrix} u_1(A,C) \\ u_1(B,C) \\ u_1(C,C) \end{bmatrix}$$

$$u_2(C,C) = \max \begin{bmatrix} u_2(C,A) \\ u_2(C,B) \\ u_2(C,C) \end{bmatrix}$$

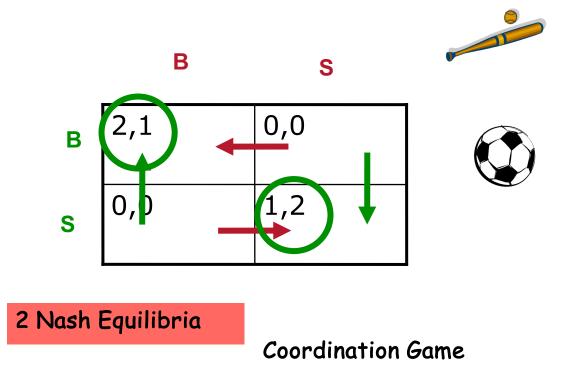
#### Nash Equilibrium

- If (a<sub>1</sub>\*,a<sub>2</sub>\*) is a N.E. then player 1 won't want to change its action given player 2 is playing a<sub>2</sub>\*
- If (a<sub>1</sub>\*,a<sub>2</sub>\*) is a N.E. then player 2 won't want to change its action given player 1 is playing a<sub>1</sub>\*

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

|   | Α   | В   | С   |
|---|-----|-----|-----|
| Α | 0,4 | 4,0 | 5,3 |
| В | 4,0 | 0,4 | 5,3 |
| C | 3,5 | 3,5 | 6,6 |

#### Another Example



#### Yet Another Example



#### (Mixed) Nash Equilibria

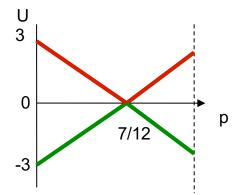
- (Mixed) Strategy: si is a probability distribution over Ai
- Strategy profile: s=(s<sub>1</sub>,...,s<sub>n</sub>)
- Expected utility: u<sub>i</sub>(s)=Σ<sub>a</sub>Π<sub>j</sub>s(a<sub>j</sub>)u<sub>i</sub>(a)
- Nash equilibrium: s\* is a (mixed) Nash equilibrium if

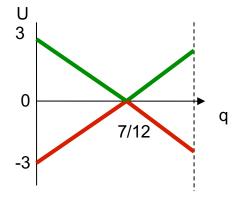
$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i', s_{-i}^*) \forall s_i'$$

#### Yet Another Example



How do we determine p and q?



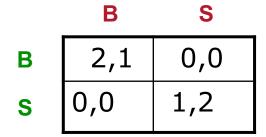


#### Yet Another Example



How do we determine p and q?

#### Exercise



This game has 3 Nash Equilibrium (2 pure strategy NE and 1 mixed strategy NE).

#### Mixed Nash Equilibrium

**Theorem (Nash 1950):** Every game in which the action sets are finite, has a mixed strategy equilibrium.

John Nash Nobel Prize in Economics (1994)



#### Finding NE

- Existence proof is *non-constructive*
- Finding equilibria?
  - 2 player zero-sum games can be represented as a linear program (polynomial)
  - For arbitrary games, the problem is in PPAD
  - Finding equilibria with certain properties is often NP-hard

Recall the Prisonner's Dilemma. What if the prisoners are **habitual** criminals?

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

How do we define payoffs?

What is the strategy space?

Recall the Prisonner's Dilemma. What if the prisoners are **habitual** criminals?

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

•••

How do we define payoffs?

Average reward

**Discounted Awards** 

...

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

Strategy space becomes significantly larger!

S:H→A where H is the **history** of play so far

Can now reward and punish past behaviour, worry about reputation, establish trust,...

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

| -5,-5 | 0,-10 |
|-------|-------|
| -10,0 | -1,-1 |

**Grim Strategy**: In first step cooperate. If opponent defects at some point, then defect forever

Tit-for-Tat: In first step cooperate. Copy whatever opponent did in previous stage.

#### Summary

Definition of a Normal Form Game

Dominant strategies

Nash Equilibria