CS 486/686: Introduction to
Artificial Intelligence

Reinforcement Learning

Large State Spaces

* Computer Go: 3361 states

* Inverted pendulum:
* 4 dimensional, continuous state space

 Atari: 210 x 160 x 3 dimensions (pixel values)

CS 486/686 F23

Value-Function Approximation

* So far we have represented value functions by a look-up table (tabular
RL)
e Every state s has an entry V(S)
* Every state-action pair s,a has an entry Q(s,a)

* |ssue
* There are too many states or actions to store in memory
* It is too slow to learn the value of each state individually

Value-Function Approximation

* Estimate value functions with function approximation
V7T(s) ~ V(S,W)
Q" (s,a) ~ Q(s, a, w)

* Let S=(X1/ XZI --°1Xn)Tor (s,a)=(X1(S,a), "'IXn(SIa))T

e Linear: V(s,w) = Y, w; x;(s) , Q(s,a,w) = X; w; x;(s, a)
* Non-linear (e.g. neural networks): V(s,w) (Q(s,a,w))= g(x;w)

Recall: Neural Networks

N
* Network of units linked by weighted edges P 8;;: ﬁ_:-_;.'O "
| e 808 0
e Each unit computes: z=h(w'x+b) o . lele e
* Inputs: x P PGPSO
* Outputs: z @ D @ (“O . ._.
* Weights: w o0 0O 0
* Bias: b @ Oy
e Activation function: h @ input Layer @ Hidden Layer @ Output Layer

* Neural networks with at least one “large enough” hidden layer consisting
olf S|g|m0|d/tanh/Gau55|an units can approximate any function arbitrarily
closely

CS 486/686 F23

Gradient Q-Learning

* Minimize the error between Q-value estimate and a target
e Estimate: Q(s,a,w)
* Target: r+ymax, Q(s’,a’,w’)

* Squared Error:

1
err(w) = S [Q(s, a,w) — r —ymax Q(s', o', w')]
* Gradient:
6’EI’I’ 8@(87 CL,W)

Ow :[Q(S,&,W)—T—VHZE}XQQS,a,W)] Ow

Gradient Q-Learning

Initialize weights w at random in [—1,1]
Observe current state s
Loop

Select action a and execute it
Receilve immediate reward r

Observe new state s’

oE 0 ,
Gradient: i (s, a)

= [Q,(s@) =~y max O, s, @)=
oErr
ow

ow w

Update weights: w « w — a

Update state: s « s’

Convergence?

e Tabular Q-learning converges when

o0)
Zat:ooand Zozf<oo

 We tyo\omally set a:(zs a)=1/n(s,a) where n(s,a) is the number of times (s,a) is
visited or 1/t.

* Linear function approximation
* Same convergence guarantees

* Non-linear function approximation
 No convergence guarantee

Non-linear function approximation

Handling divergence:
* Experience replay

e Use two networks:
e Q-network
* Target network

Experience Replay

 Store previous experiences (s,a,,s’,r) into a buffer and sample a mini-batch of
previous experiences at each step to learn by Q-learning
* Break correlations between successive updates (more stable learning)
* Less interactions with environment needed (better data efficiency)

Target Network
* Use a target network that is updated only occasionally

e Repeat for each (s,a,s’,r) in a mini-batch:

W <— W — Oét[Q(S, CL,W) —r — f}/maquQ(S/j CL/,W/)] 8Q<2:7 W)

/
W <— W

* Observe: similar in spirit to value iteration

Deep Q-network (DQN

* Gradient Q-learning with

* Dee P neu ral networks Playing Atari with Deep Reinforcement Learning
* Experience replay
e Target network

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

CS 486/686 F23 11

DQN

Initialize weights w and w at random in [—1,1]
Observe current state s
Loop

Select action a and execute it

Receive immediate reward r

Observe new state s’

Add (s, a, s’, r) to experience buffer

Sample mini-batch of experiences from buffer

For each experience (5, 4, s’, 7) in mini-batch

) oF
Gradient: i

— [Qw(§7 &) - 7/; —Y IIlAaX QW(‘;,a El’)] aQw(Sa Cl)
a’ ow

oErr

Update weights: w «w — a
ow

Update state: s « s’
Every c steps, update target: w < w

DQN for Atari

13

3 [z ofofoJofojojofo
i3] £ K8 1 - ¥ +8+0 + -0+ +0 0+
m W IR A2y V] K
c N

(o] > _— ___ /#/

O — [T

> _— / T

= o o e 0o o oo 0 0000 e o o T
(VIS

O

(0]

4

%) ® ® 0 0 0 0 0 0o 0 o ® ® & o 0 0 0 0 0 0

C

c

obr

(@]

=

H= on
o
[
O
0
O
S~
O

5 2

Re) wn

M (®)]

Mv - o

afulals] alalul

Q N1788R\\17

O

C

§e]

]

=

4 —m_ —%

>

c

o]

(@] - o

[
H

Bast lincar leam

|h'i“li“Ili“i“i‘“i““ﬁil-iii.if

Y

LR,

CS 486/686 F23

))
: | s I 10T
200 300 400 s00 600 1,000

14

