
CS 486/686: Introduction to 
Artificial Intelligence

Reinforcement Learning



Large State Spaces

• Computer Go: 3361 states

• Inverted pendulum:
• 4 dimensional, continuous state space

• Atari: 210 x 160 x 3 dimensions (pixel values)

CS 486/686 F23 2
CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Large State Spaces
▪ Computer Go:  states 

▪ Inverted pendulum:  
▪ 4-dimensional  

continuous state space 

▪ Atari: 210 x 160 x 3 dimensions (pixel values)

3361

⟨x, x′ , θ, θ′ ⟩

4



Value-Function Approximation

• So far we have represented value functions by a look-up table (tabular 
RL)
• Every state s has an entry V(S)
• Every state-action pair s,a has an entry Q(s,a)

• Issue
• There are too many states or actions to store in memory
• It is too slow to learn the value of each state individually

CS 486/686 F23 3



Value-Function Approximation

• Estimate value functions with function approximation

• Let s=(x1, x2, …,xn)T or (s,a)=(x1(s,a), …,xn(s,a))T

• Linear: V s,𝐰 = ∑!𝑤𝑖 𝑥𝑖(𝑠)  , Q(s,a,w) = ∑!𝑤𝑖 𝑥𝑖(𝑠, 𝑎)
• Non-linear (e.g. neural networks): V(s,w) (Q(s,a,w))= g(x;w)

CS 486/686 F23 4

V ⇡(s) ⇠ V̂ (s,w)

Q⇡(s, a) ⇠ Q̂(s, a,w)

<latexit sha1_base64="9nsckbHeM+lLWpf19ZmO8prUwgs=">AAACOHicbVDLSgMxFM34rPU16tJNsAgtlDIjFV0W3bizBfuATi130kwbmnmQZJQy9LPc+BnuxI0LRdz6BWbaLmrrgcDhnHPJvceNOJPKsl6NldW19Y3NzFZ2e2d3b988OGzIMBaE1knIQ9FyQVLOAlpXTHHaigQF3+W06Q6vU7/5QIVkYXCnRhHt+NAPmMcIKC11zdvGvROxvCxgRzIfOwNQSWOcl0XHBzVwveRxXMDYcbK1aa4I88lamoT5bNfMWSVrArxM7BnJoRmqXfPF6YUk9mmgCAcp27YVqU4CQjHC6TjrxJJGQIbQp21NA/Cp7CSTw8f4VCs97IVCv0DhiTo/kYAv5ch3dTJdUS56qfif146Vd9lJWBDFigZk+pEXc6xCnLaIe0xQovhIEyCC6V0xGYAAonTXWV2CvXjyMmmclexy6bxWzlWuZnVk0DE6QXlkowtUQTeoiuqIoCf0hj7Qp/FsvBtfxvc0umLMZo7QHxg/v6WOqyc=</latexit>



Recall: Neural Networks

• Network of units linked by weighted edges

• Each unit computes: z=h(wTx+b)
• Inputs: x
• Outputs: z
• Weights: w
• Bias: b
• Activation function: h

• Neural networks with at least one “large enough” hidden layer consisting 
of sigmoid/tanh/Gaussian units can approximate any function arbitrarily 
closely

CS 486/686 F23 5

CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Recall: Traditional Neural Network
▪ Network of units (computational  

neurons) linked by weighted edges 

▪ Each unit computes:   
▪ Inputs:  
▪ Outputs: 
▪ Weights (parameters):  
▪ Bias: 
▪ Activation function (usually non-linear): 

z = h(wT x + b)
x

z
w

b
h

7



Gradient Q-Learning

• Minimize the error between Q-value estimate and a target 
• Estimate: Q(s,a,w)
• Target: r+𝛾maxa’ Q(s’,a’,w’)

• Squared Error:

• Gradient:

CS 486/686 F23 6

err(w) =
1

2
[Q(s, a,w)� r � �max

a0
Q(s0, a0,w0)]2

<latexit sha1_base64="gn6fJDC27M0sSA8s5MCoFHVL0tc=">AAACR3icbVBNaxsxFNS6aZu6X05z7EXUFDvgmF2Tkl4KIbnkmECdBLwb81Z+64hIu4v0to0R++966bW3/oVeckgpPVZ2fHCSDgiGmXm8p0lLJS2F4c+g8Wjt8ZOn68+az1+8fPW6tfHmxBaVETgUhSrMWQoWlcxxSJIUnpUGQacKT9PLg7l/+gWNlUX+mWYlJhqmucykAPLSuHUeE16RQ2PqbqyBLtLMfa23PsWZAeGi2g3q0XHX9qC34m6b7XgKWgP34tXYQaf2mU4POiupzlZyPhi32mE/XIA/JNGStNkSR+PWj3hSiEpjTkKBtaMoLClxYEgKhXUzriyWIC5hiiNPc9BoE7fooebvvTLhWWH8y4kv1NUJB9ramU59cn6mve/Nxf95o4qyj4mTeVkR5uJ2UVYpTgWfl8on0qAgNfMEhJH+Vi4uwDdIvvqmLyG6/+WH5GTQj3b6H4532nv7yzrW2Vv2jnVZxHbZHjtkR2zIBPvGfrEb9jv4HlwHf4K/t9FGsJzZZHfQCP4BWpmxdw==</latexit>

@Err

@w
= [Q(s, a,w)� r � �max

a0
Q(s0, a0,w0)]

@Q(s, a,w)

@w

<latexit sha1_base64="eiZwRz7Tinoa3WAYOIQ1g/erwMs=">AAACinicbVFda9swFJXdbe2ybsu6x72IhZEGkmCXbOkYg7AP2GMKS1uITbhW5FRUso103TUY/5j9pb3t30x2zJalvSA4nHvuh86NMikMet5vx9178PDR/sHj1pPDp8+et18cnZs014zPWCpTfRmB4VIkfIYCJb/MNAcVSX4RXX+u8hc3XBuRJt9xnfFQwSoRsWCAllq0fwaxBlYEGWgUIGmA/BaLr1qX5RapAK+iuPhRlvQjnZ8dmz70a2VN9gZ6EKxAKbDC20UB3dJKun3o9v9VdnvhzqimzV9F7/6Ji3bHG3p10LvAb0CHNDFdtH8Fy5TliifIJBgz970Mw6LqzCQvW0FueAbsGlZ8bmECipuwqK0s6RvLLGmcavsSpDW7XVGAMmatIqusVjS7uYq8LzfPMT4NC5FkOfKEbQbFuaSY0uoudCk0ZyjXFgDTwu5K2RVYw9Ber2VN8He/fBecnwz90fDt2agz+dTYcUBekdfkmPhkTCbkG5mSGWHOvjNw3jlj99A9cd+7HzZS12lqXpL/wv3yBxSTxsg=</latexit>



Gradient Q-Learning

CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Gradient Q-learning 

10

Initialize weights  at random in  
Observe current state  
Loop 

Select action  and execute it 
Receive immediate reward  
Observe new state  

Gradient:  

Update weights:  
Update state: 

w [−1,1]
s

a
r

s′ 

∂Err
∂w

= [Qw(s, a) − r − γ max
a′ 

Qw(s′ , a′ )] ∂Qw(s, a)
∂w

𝒘 ← 𝒘 − 𝛼
𝜕𝐸𝑟𝑟
𝜕𝒘

s s′ 

CS 486/686 F23 7



Convergence?

• Tabular Q-learning converges when 

• We typically set 𝛼t(s,a)=1/n(s,a) where n(s,a) is the number of times (s,a) is 
visited or 1/t.

• Linear function approximation
• Same convergence guarantees

• Non-linear function approximation
• No convergence guarantee

CS 486/686 F23 8

1X

t=0

↵t = 1 and
1X

t=0

↵2
t < 1

<latexit sha1_base64="/xcbdg0zAfHeoyRGgKp1xsWbOSE=">AAACPnicdVC7SgQxFM34dn2tWtoEF8FqmRFFCxdEG0sFV4WddbiTzbjBJDMkd8Rl2C+z8RvsLG0sFLG1NPsQfB4IHM65h5t74kwKi77/4I2Mjo1PTE5Nl2Zm5+YXyotLpzbNDeN1lsrUnMdguRSa11Gg5OeZ4aBiyc/iq4Oef3bNjRWpPsFOxpsKLrVIBAN0UlSuhzZXUYE1v3sRCp1gh4YgszZESGv0U1FxelNQ0C3apf8FLjZcZHcgReWKX/X7oL9JMCQVMsRRVL4PWynLFdfIJFjbCPwMmwUYFEzybinMLc+AXcElbziqQXHbLPrnd+maU1o0SY17Gmlf/ZooQFnbUbGbVIBt+9PriX95jRyTnWYhdJYj12ywKMklxZT2uqQtYThD2XEEmBHur5S1wQBD13jJlRD8PPk3Od2oBpvVrePNyt7+sI4pskJWyToJyDbZI4fkiNQJI7fkkTyTF+/Oe/JevbfB6Ig3zCyTb/DePwDMKa97</latexit>



Non-linear function approximation

Handling divergence:
• Experience replay
• Use two networks:

• Q-network
• Target network

Experience Replay
• Store previous experiences (s,a,,s’,r) into a buffer and sample a mini-batch of 

previous experiences at each step to learn by Q-learning
• Break correlations between successive updates (more stable learning)
• Less interactions with environment needed (better data efficiency)

CS 486/686 F23 9



Target Network

• Use a target network that is updated only occasionally

• Repeat for each (s,a,s’,r) in a mini-batch:

• Observe: similar in spirit to value iteration

CS 486/686 F23 10

w w � ↵t[Q(s, a,w)� r � �max
a0

Q(s0, a0,w0)]
@Q(s, a,w)

@r
w0  w

<latexit sha1_base64="57zFCubOhTh3VPuq1NGDJQFSsU0=">AAACqXicdVFdb9MwFHXC1ygf6+CRF4uKZRNtlaAheJzghQceVol2FXUU3bhOa81OIvtmo4ry3/gNvPFvcLpCxwpXsnR0zrn29blpqaTFMPzp+Xfu3rv/YO9h59HjJ0/3uwfPJraoDBdjXqjCTFOwQslcjFGiEtPSCNCpEufpxcdWP78Uxsoi/4KrUsQaFrnMJAd0VNL9zjTgMs3qq+aQMiUyBGOKK7qlBwxUuYQEZ6Mj24f+VjkemAFbgNbguG9JDUHjLEEfghum4DhmmQFesxIMSlB055pmq/1mTdNQxjp/TEFD/zNe0u2Fw3BddBdEG9AjmzpLuj/YvOCVFjlyBdbOorDEuG4H4Eo0HVZZUQK/gIWYOZiDFjau10k39JVj5jQrjDs50jV7s6MGbe1Kp87ZTmhvay35L21WYfY+rmVeVihyfv1QVimKBW3XRufSCI5q5QBwI92slC/B5YpuuR0XQnT7y7tg8mYYnQzfjk56px82ceyRF+QlOSIReUdOySdyRsaEe4feZ2/sTfzX/sif+l+vrb636XlO/iqf/wLS5tLX</latexit>



Deep Q-network (DQN)

• Gradient Q-learning with 
• Deep neural networks
• Experience replay
• Target network

CS 486/686 F23 11

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value
functions or policy representations. Clearly, the performance of such systems heavily relies on the
quality of the feature representation.

Recent advances in deep learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in computer vision [11, 22, 16] and speech recognition [6, 7].
These methods utilise a range of neural network architectures, including convolutional networks,
multilayer perceptrons, restricted Boltzmann machines and recurrent neural networks, and have ex-
ploited both supervised and unsupervised learning. It seems natural to ask whether similar tech-
niques could also be beneficial for RL with sensory data.

However reinforcement learning presents several challenges from a deep learning perspective.
Firstly, most successful deep learning applications to date have required large amounts of hand-
labelled training data. RL algorithms, on the other hand, must be able to learn from a scalar reward
signal that is frequently sparse, noisy and delayed. The delay between actions and resulting rewards,
which can be thousands of timesteps long, seems particularly daunting when compared to the direct
association between inputs and targets found in supervised learning. Another issue is that most deep
learning algorithms assume the data samples to be independent, while in reinforcement learning one
typically encounters sequences of highly correlated states. Furthermore, in RL the data distribu-
tion changes as the algorithm learns new behaviours, which can be problematic for deep learning
methods that assume a fixed underlying distribution.

This paper demonstrates that a convolutional neural network can overcome these challenges to learn
successful control policies from raw video data in complex RL environments. The network is
trained with a variant of the Q-learning [26] algorithm, with stochastic gradient descent to update
the weights. To alleviate the problems of correlated data and non-stationary distributions, we use

1

ar
X

iv
:1

31
2.

56
02

v1
  [

cs
.L

G
]  

19
 D

ec
 2

01
3

CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Large State Spaces
▪ Computer Go:  states 

▪ Inverted pendulum:  
▪ 4-dimensional  

continuous state space 

▪ Atari: 210 x 160 x 3 dimensions (pixel values)

3361

⟨x, x′ , θ, θ′ ⟩

4



DQN

CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Deep Q-network (DQN)

19

Initialize weights  and  at random in  
Observe current state  
Loop 

Select action  and execute it 
Receive immediate reward  
Observe new state  
Add  to experience buffer  
Sample mini-batch of experiences from buffer 
For each experience  in mini-batch 
 Gradient:  

 Update weights:  

Update state:  
Every  steps, update target: 

w w [−1,1]
s

a
r

s′ 
⟨s, a, s′ , r⟩

⟨ ̂s, ̂a, ̂s′ , ̂r⟩
∂Err
∂w

= [Qw( ̂s, ̂a) − ̂r − γ max
̂a′ 

Qw( ̂s′ , ̂a′ )] ∂Qw( ̂s, ̂a)
∂w

w w − α
∂Err
∂w

s s′ 
 𝑐 w w

CS 486/686 F23 12



DQN for Atari

CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

Deep Q-Network for Atari

20CS 486/686 F23 13



CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian

DQN versus Linear Approximation

21CS 486/686 F23 14


