CS 486/686: Introduction to
Artificial Intelligence

Reinforcement Learning

Introduction

Agent
State Reward Action
Environment
a0 al a2
sO s1 s2 >
0 r1 r2

Goal: Learn to choose actions that maximize rg+y ri+y?ry+..., where 0-<y <1

Reinforcement Learning Characteristics

Delayed Reward
Credit assighment problem

Exploration and exploitation
Possibility that a state is only partially observable

Life-long learning

RL Model

Set of States, S
Set of Actions, A

Set of reward signals, R
Rewards might be delayed

Markov Decision Process

Poor &
Famous |A

Rich &
Famous
+10

MDPs and RL

If we were given the MDP then we could compute the optimal policy

T
™ (S;) = arg lll{::;ll'{ Ri + A Z P(S;]8:, a)V*(S;)

S;) = R; +1 ZF{HH *(S;)

In RL we are not given the model (rewards/transition probabilities)
Prediction problem: learn V*’s or V™
Control problem: learn t*

All RL methods are driven by values

e Recall the discounted sum of future rewards:

ﬁr=nr|]—ﬁ'nf,j i_:I-...!I?,!-.IE'I‘H_':i.fri'f.]_'...

 Value of a state, given a policy

1-:[5] p— E{E_;_!I

.‘_,'l'l;!' — -".!:.._l.;F::-.,,.-_ . :}

* Value of a state-action pair, given a policy

(_-.I;}:[e':hf!] — E{{;flbli — H.*'—lf — H...'Fl,l_|_|l::,;_ Pl T:'}’

CS 486/686 F23

All RL methods are driven by values

Optimal value of a state

Vi (s)max V7™ (s)
i

Optimal value of a state-action pair
Q" (s,a) =maxQ"(s,a)

Optimal policy: mtis an optifnal policy if and only if

7 (8,a) > 0 only where Q*(s,a) = mAaXx ()% (s,b)¥s € S

That is, ™ is optimal iff it is greedy with respect to Q*

CS 486/686 F23

4 Value Functions

State Values Action Values
Prediction Problem YA Q"
Control Problem V¥ Q*

These are theoretical objects, and are distinct from their estimates
Vtand Qt

Bellman Optimality Equations

V*(s) = max Q™ (s,a)

=max E[R; 11 + YV (8:41|S: = 5, Ay = a]

=max Y p(s,r|s,a)[r + 7V *(s')]

Q% (s,a) =E[Ri 41 +17 mqt:-:Q*{S,*l_n.’HS, =5, A, = a

= Z p(s'.r|s,a)lr+1 max Q*(s',a’)]

CS 486/686 F23

10

Another way of distinguishing RL methods

* Model-Based

e Learn the model of the environment (i.e. when done, we know the
underlying MDP)

* Model-Free

* Never explicitly learn the model (i.e. we never track probability
with which we transition between states)

RL and Prediction

* Let’s consider a simple problem

sl r|r|r|+l =
r. = -0.04 for non-terminal states

2 u |l -1

u
Hul]]| We do not know the
1 2 3 4 transition probabilities

—(1,2)—(1,3)—(2,3)—(3,3)—(4.3).
)(2’3))(3’3)_)(3’2)_)(3’3)_)(4’3)”

What is the value, V"(s) of being in state s?

CS 486/686 F23

RL and Prediction: Value Estimation

y=1

r; = -0.04 for non-terminal states

(1,1)—(1,2)—(1,3)—(1,2)—(1,3)—(2,3)—(3,3)—(4,3).4
(1,1)—(1,2)—(1,3)—(2,3)—(3,3)—(3,2)—(3,3)—(4,3).4
(1,1)—(2,1)—(3,1)—(3,2)—(4,2) ,

What is the value, V*(s) of being in state s?

Vi(S) = E[XiZo v R(S:)]

CS 486/686 F23

13

Asynchronous Dynamic Programming

r; = -0.04 for non-terminal states

sl r|r|r|+1

U
lal 11 VT(si) = r(si) +v2_ PV (s)
j
1

2 3 4 t

(1,1)—(1,2)—(1,3) — (1,2)—(1,3)— (2,3)—(3,3)—(4,3).4
(1,1)—(1,2)—(1,3)—(2,3)—(3,3)—(3,2)—(3,3)—(4,3).,
(1,1)—(2,1)—(3,1)—(3,2)—(4,2)

P(l,s)(2,3)r‘: 2 /3

Use this information in the Bellman equation
Pasya2)™=1

CS 486/686 F23

14

Prediction: Temporal Difference (TD)

* TD is considered to be a bootstrapping and sampling method

* Bootsrapping: update involves an estimate of the value function
* TD and dynamic programming boostrap
* Direct utility estimation (a variant of a Monte Carlo method) did not

* Sampling: update does not involve an expected value
* TD and direct utility estimation samples
* Dynamic programming does not sample

Prediction: The Simplest TD Method TD(0)

* The simplest temporal-difference method TD(0):

VI(St) <« V(St) + a [f?r+1 + YV (St+1) — V (St J}

target: an estimate of the return

CS 486/686 F23

16

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) =0, for all s € ST)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A < action given bv m for S
Take action A. observe R, S’
V(S) «+ V(S)+a|R+~V(S") - V(S9)]
S+ 5
until S is terminal

Agent program
Environment program
saeessrs EXPeriment program

17

Dynamic Programming

V(S) < E,[R.+yV(S,.)] =D m@lS) D p(s',rISea)r +7V(s)]

CS 486/686 F23

18

Direct Utility Estimation (and other MC variants)

CS 486/686 F23 19

TD(0)

3 1
i

V(S,) <= V(S)+a|[R,, +7V(S,.)-V(S)]

()) 9
ol mo

! \ I ! |
-I'F % |) |
CS 486/686 F23

20

Example: Driving Home (sutton and Barto)

Driving home:
Each day you drive home

Your goal is to try and predict how long your commute will take at
particular stages

When you leave your office you note the time, day, and other
relevant information

Policy Evaluation or prediction task

Example: Driving Home

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining D 35 40
exiting highway 2(0) 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43
CS 486/686 F23

22

Example: Driving Home

Rewards = 1 per step

Discount =1
Gt = time to go from state St

V(St)= expected time to get home from S,

Goal: update the prediction of total time leaving from office,
while driving home

Driving Home

V(s) V(office)
Elapsed Time Predicted Predicted

State (minutes)| R|Time to Go Total Time
leaving office, friday at 6 0 5 30 30
reach car, raining 5 15 35 40
exiting highway 20 10 15 35
2ndary road, behind truck 30 10 10 40
entering home street 40 3 3 43
arrive home 43 0 43

» Task: update the value function as we go, based on
observed elapsed time—Reward column

CS 486/686 F23

24

Changes Recommended by TD(0) (alpha=1)

total
travel
time

V(office)

45 4

30 -

actual
outcome

I I) | I I
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

CS 486/686 F23

25

TD(A)

* ldea: You can update from the whole training sequence not just a
single transition

Ve(si) = V7(si)4a) _A™ (s)V (851) V(53]

Learning Action-Value Functions

State Values

Action Values

Prediction Problem

VT[

QT[

Control Problem

V*

Q*

Learning Action-Values

Estimate Q™ from current policy

_ S _R,-L@ LY .R,-3@ .
<‘ } SA \ L SurAun N\ Si2Ai N SusArs

After every transition from a non-terminal state, S,, do

0(S,.A) <= OGS, A)+ | R, +70(S,,.A,)-O(S,.A)]
If S;,1is terminal , then Q(S;,,A:,1)=0

CS 486/686 F23

28

From Learning Action-Values to Control

We can take action-value prediction problem and change it to a control

problem by always updating the policy to be greedy with respect to the
current estimates

Different types of policies:

Behavioral Policy: used to generate actions and gather data
Learning Policy: target policy to learn

On-Policy Learning: Behavior = Learning
Off-Policy Learning: Behavior #Learning

Sarsa: On-Policy TD Control

O(S,.A) < OGS, . A) + a R, +70(S,,1.A,,) - OCS,,A) |

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from () (e.g., s-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., s-greedy)
Q(S.A) + Q(S.A)+ ao|[R+~Q(S",A") — Q(S, A)]
S+ S A+ AL
until S is terminal

TS 486/6806 23

30

Q-Learning: Off-Policy TD Control

Q(St, At) < Q(5t. Ay) + a [Rf+1 ymax Q(Se+1,a) — Q(St, At)

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q) (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S.A) + a[R +ymax, Q(S5",a) — Q(S, A)]
S« 5';
until S is terminal

CS486/686F23

31

Example: Q-Learning

R 73, 100 815 R
Tﬁ— | 04 ?6_ | 94
iUl ‘UI

r=0 for non-terminal states
v=0.9
a=05

CS 486/686 F23

Example: Sarsa vs Q-Learning

R =-1

Reward
per
epsiode

i

- safe path

= optimal path

The Cliff

e—greedy., € =0.1

Sarsa

25
A I Nom N Ao a1 -I
—50- Ry ____,-' J . ,-'l
Q-learning
754
=100 T T T T 1
0 100 200 300 40N 500

Episodes/ess F23

33

Summary

Basic RL model
Prediction Problem vs Control Problem

Temporal Diffference Updates

Prediction TD(0)

Control
Sarsa: On-Policy
Q-Learning: Off-Policy

