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Introduction
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Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0·<γ <1
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Reinforcement Learning Characteristics

Delayed Reward
Credit assignment problem

Exploration and exploitation

Possibility that a state is only partially observable

Life-long learning
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RL Model

Set of States, S

Set of Actions, A

Set of reward signals, R
Rewards might be delayed
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Markov Decision Process
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MDPs and RL
If we were given the MDP then we could compute the optimal policy

In RL we are not given the model (rewards/transition probabilities)
Prediction problem: learn V*’s or Vπ

Control problem: learn π*
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All RL methods are driven by values
• Recall the discounted sum of future rewards:

• Value of a state, given a policy π

• Value of a state-action pair, given a policy π

CS 486/686 F23 7



All RL methods are driven by values

Optimal value of a state

Optimal value of a state-action pair

Optimal policy: π is an optimal policy if and only if

That is, π* is optimal iff it is greedy with respect to Q*
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4 Value Functions

State Values Action Values

Prediction Problem Vπ Qπ

Control Problem V* Q*

These are theoretical objects, and are distinct from their estimates 
Vt and Qt
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Bellman Optimality Equations
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Another way of distinguishing RL methods

•Model-Based
• Learn the model of the environment (i.e. when done, we know the 

underlying MDP)

•Model-Free
• Never explicitly learn the model (i.e. we never track probability 

with which we transition between states)
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RL and Prediction
• Let’s consider a simple problem
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RL and Prediction: Value Estimation
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Asynchronous Dynamic Programming
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Prediction: Temporal Difference (TD)

• TD is considered to be a bootstrapping and sampling method

• Bootsrapping: update involves an estimate of the value function
• TD and dynamic programming boostrap
• Direct utility estimation (a variant of a Monte Carlo method) did not

• Sampling: update does not involve an expected value
• TD and direct utility estimation samples
• Dynamic programming does not sample
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Prediction: The Simplest TD Method TD(0)

• The simplest temporal-difference method TD(0):
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Dynamic Programming
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Direct Utility Estimation (and other MC variants)
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TD(0)
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Example: Driving Home (Sutton and Barto)

Driving home:
Each day you drive home
Your goal is to try and predict how long your commute will take at 
particular stages
When you leave your office you note the time, day, and other 
relevant information

Policy Evaluation or prediction task
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Example: Driving Home
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Example: Driving Home

Rewards = 1 per step
Discount = 1
Gt = time to go from state St
V(St)= expected time to get home from St

Goal: update the prediction of total time leaving from office, 
while driving home
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Driving Home
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Changes Recommended by TD(0) (alpha=1)
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TD(λ)

• Idea: You can update from the whole training sequence not just a 
single transition
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Learning Action-Value Functions

State Values Action Values

Prediction Problem Vπ Qπ

Control Problem V* Q*
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Learning Action-Values

Estimate Qπ from current policy π

After every transition from a non-terminal state, St, do

If St+1 is terminal , then Q(St+1,At+1)=0
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From Learning Action-Values to Control

We can take action-value prediction problem and change it to a control 
problem by always updating the policy to be greedy with respect to the 
current estimates

Different types of policies:
Behavioral Policy: used to generate actions and gather data
Learning Policy: target policy to learn

On-Policy Learning: Behavior = Learning
Off-Policy Learning: Behavior ≠Learning
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Sarsa: On-Policy TD Control
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Q-Learning: Off-Policy TD Control
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Example: Q-Learning
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Example: Sarsa vs Q-Learning
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Summary

Basic RL model

Prediction Problem vs Control Problem

Temporal Diffference Updates
Prediction TD(0)
Control

Sarsa: On-Policy
Q-Learning: Off-Policy
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