CS 486/686: Introduction to Artificial Intelligence

Reinforcement Learning (Bandits)

Outline

- What is reinforcement learning
- Multiarmed Bandits

What is RL?

- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
- Learner is not told what actions to take
- Learner discovers value of actions by
 - Trying actions out
 - Seeing what the reward is

What is RL?

Reinforcement learning

Ouch!

Reinforcement Learning Problem

Goal: Learn to choose actions that maximize $r_0+\gamma$ $r_1+\gamma^2r_2+...$, where $0 < \gamma < 1$

Example: Tic Tac Toe (or Backgammon or Go...)

- State: Board configuration
- Actions: Next move
- Reward: 1 for a win, -1 for a loss, 0 for a draw
- **Problem**: Find π : S \rightarrow A that maximizes the reward

estimated state value (≈ prob of winning)

Action selection by a shallow search

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world

Originally used expert handcrafted features, later repeated with raw board positions

Example: Alpha Go

- Perceptions: state of the board
- Actions: legal moves
- Reward: +I or -I at the end of the game
- Trained by playing games against itself
- Invented new ways of playing which seem superior

Example: Inverted Pendulem

- State: x(t), x'(t), $\theta(t)$, $\theta'(t)$
- Actions: Force F
- Reward: 1 for any step where the pole is balanced
- **Problem**: Find π : S \rightarrow A that maximizes the reward

RL + Deep Learing Performance on Atari Games

Other Applications

- Robotics
 - Dexterous manipulations, drone maneuvers
- Datacenter management
 - Policies for bringing up and shutting down machines
 - Center cooling
- Video compression
- Discovering new algorithms
- Routing Autonomous Vehicles
- Natural Language Proccessing (Reinforcement Learning with Human Feedback (RLHF))
- Finance (e.g. portfolio optimization, market making, option pricing)

CS 486/686 F23

Reinforcement Learning Characteristics

- Delayed reward
 - Credit assignment problem
- Exploration and exploitation
- Possibility that a state is only partially observable
- Life-long learning

Reinforcement Learning Model

- Set of states S
- Set of actions A
- Set of reinforcement signals (rewards)
 - Rewards may be delayed

Multi-Armed Bandits

The simplest reinforcement learning problem is the multiarmed bandit (a one-state RL problem)

Widely used:

- Experiment design (clinical trials)
- Online ad placement
- Recommender systems

• ...

K-armed bandit

At each time step t, you choose an action A_t from k possible actions, and receive reward R_t

The reward depends only on the action taken (it is i.i.d)

$$q_*(a) \doteq \mathbb{E}[R_t | A_t = a], \quad \forall a \in \{1, \dots, k\}$$
 true values

These true values are unknown, and the distribution is unknown

Goal: Maximize your total reward

To achieve this goal you need to try actions to learn their values (explore) and prefer those that appear best (exploit)

Exploration/Exploitation Tradeoff

Assume you had estimates

$$Q_t(a) \approx q_*(a), \quad \forall a$$

action-value estimates

Define the greedy action as

$$A_t^* \doteq \arg\max_a Q_t(a)$$

If $A_t = A_t^*$ then you are **exploiting**

If $A_t \neq A_t^*$ then you are **exploring**

You can't do both but you need to do both

Action-Value Methods

Methods that learn action-value estimates and nothing else

Estimate action values as sample averages:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i = a}}$$

The same average estimate will converge to true values if the action is taken an infinite number of times

$$\lim_{\substack{N_t(a)\to\infty\\}}Q_t(a)\ =\ q_*(a)$$
 The number of times action a has been taken by time t

ε-Greedy Action Selection

In greedy action selection you always exploit

In ϵ -greedy, you are usually greedy but with probability ϵ you pick an action at random

This is a simple way of balancing exploration and exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

$$\begin{aligned} Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \end{aligned}$$

$$N(a) \leftarrow 0$$

Repeat forever:

$$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1-\varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$$
 (breaking ties randomly)
$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right]$$

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$

A Ten-Armed Example (Sutton and Barto)

ε-Greedy Action Selection

A simple bandit algorithm

Initialize, for a = 1 to k:

$$\begin{aligned} Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \end{aligned}$$

$$N(a) \leftarrow 0$$

Repeat forever:

$$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1-\varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$$

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right]$$
(breaking ties randomly)

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$

Averaging and Learning Rules

Focussing on a single action so as to avoid notation issues

Note that our estimate of the value of taking some action is the average reward collected by taking that action

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

Can we compute this incrementally without storing all rewards to date?

$$Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

Standard form for learning/update rules

$$NewEstimate \leftarrow OldEstimate + StepSize \left[Target - OldEstimate \right]$$

Derivation of the Update Rule

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

Non-Stationary Problems

What happens when the problem is non-stationary? (i.e. the true values change over time)?

Sample average is not an appropriate technique

Instead, exponential, recency-weighted average

$$Q_{n+1} \doteq Q_n + \alpha \left[R_n - Q_n \right]$$
$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i,$$

where α is a constant step-size parameter, $\alpha \in (0,1]$

Convergence Conditions

• To ensure convergence with probability 1, we require

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

• e.g.,
$$\alpha_n \doteq \frac{1}{n}$$

• not
$$\alpha_n \doteq \frac{1}{n^2}$$

if
$$\alpha_n \doteq n^{-p}$$
, $p \in (0,1)$
then convergence is
at the optimal rate:
 $O(1/\sqrt{n})$

Optimism and Bandits

- We need to start somewhere with Q1(a), which introduces a bias
 - So far assumed Q1(a)=0
- We could be optimistic and initialize action values differently $(\Omega 1/a)=5$

Upper Confidence Bounds

We can reduce exploration over time by using optimism Estimate an upper bound on the true action values Select action with largest estimated upper bound

$$A_t \doteq \operatorname*{arg\,max}_{a} \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

Optimism in the Face of Uncertainty

What action should be picked?

The more uncertain we are about an action-value, the more important it is to explore it since it could turn out to be the best action

Optimism in the Face of Uncertainty

After we have picked the blue action, we are more confident in its value. We are now more likely to pick another action.

Upper Confidence Bounds

• We want to estimate an upper confidence $U_t(a)$ for each action such that $q^*(a) \le Q_t(a) + U_t(a)$

- This depends on the number of times we have sampled action a
 - Small Nt(a) -> large Ut(a) (estimated value is inaccurate)
 - Large Nt(a) -> small Ut(a) (estimated value is accurate)
- Select action $\max = \max [Q_t(a) + U_t(a)]$

How to Determine the Bound

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_t$ be i.i.d. random variables in [0,1], and let $\overline{X}_t = \frac{1}{\tau} \sum_{\tau=1}^t X_{\tau}$ be the sample mean. Then

$$\mathbb{P}\left[\mathbb{E}\left[X\right] > \overline{X}_t + u\right] \le e^{-2tu^2}$$

Apply bound to bandit awards

$$P[q^*(a) > Q_t(a) + U_t(a)] \le e^{-2N_t(a)U_t(a)^2}$$

How to Calculate the UCB

Now we pick a probability p that exceeds value of the UCB and solve for Ut(a)

$$e^{-2N_t(a)U_t(a)^2} = p$$

$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

Reduce p as observe more rewards a g n-t-4

$$U_t(a) = \sqrt{\frac{2 \log t}{N_t(a)}}$$

Summary

• Bandits are the simplest RL models and we will be building on them

Key challenge is the balance between exploration and exploitation