
CS 486/686: Introduction to 
Artificial Intelligence

Reinforcement Learning (Bandits)



Outline

• What is reinforcement learning

• Multiarmed Bandits
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What is RL?

• Reinforcement learning is learning what to do so as to maximize a 
numerical reward signal

• Learner is not told what actions to take

• Learner discovers value of actions by

- Trying actions out 

- Seeing what the reward is
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Don’t  
touch. You 
will get 
burnt

Supervised learning
Reinforcement learning

Ouch!

What is RL?
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Reinforcement Learning Problem
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Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0·<γ <1



Example: Tic Tac Toe (or Backgammon or Go…)
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• State: Board configuration

• Actions: Next move

• Reward: 1 for a win, -1 for a 
loss, 0 for a draw

• Problem: Find π: S →A that 
maximizes the reward



TD-Gammon





Example: Inverted Pendulem
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• State: x(t), x’(t), θ(t), θ’(t)

• Actions: Force F

• Reward: 1 for any step 
where the pole is balanced

• Problem: Find π: S →A that 
maximizes the reward





Other Applications

• Robotics
• Dexterous manipulations, drone maneuvers

• Datacenter management
• Policies for bringing up and shutting down machines
• Center cooling 

• Video compression
• Discovering new algorithms 
• Routing Autonomous Vehicles
• Natural Language Proccessing (Reinforcement Learning with Human 

Feedback (RLHF))
• Finance (e.g. portfolio optimization, market making, option pricing)
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Reinforcement Learning Characteristics

• Delayed reward
- Credit assignment problem

• Exploration and exploitation

• Possibility that a state is only partially observable

• Life-long learning
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Reinforcement Learning Model

• Set of states S

• Set of actions A

• Set of reinforcement signals (rewards)

- Rewards may be delayed
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Multi-Armed Bandits
The simplest reinforcement 
learning problem is the multi-
armed bandit (a one-state RL 
problem)

Widely used:

• Experiment design (clinical 
trials)

• Online ad placement

• Recommender systems

• …

Thanks to D. Precup



K-armed bandit
At each time step t, you choose an action At from k possible actions, and 
receive reward Rt

The reward depends only on the action taken (it is i.i.d)

These true values are unknown, and the distribution is unknown

Goal: Maximize your total reward

To achieve this goal you need to try actions to learn their values 
(explore) and prefer those that appear best (exploit)



Exploration/Exploitation Tradeoff
Assume you had estimates

Define the greedy action as 

If At=At* then you are exploiting

If At ≠At* then you are exploring

You can’t do both but you need to do both



Action-Value Methods
Methods that learn action-value estimates and nothing 
else

Estimate action values as sample averages:

The same average estimate will converge to true 
values if the action is taken an infinite number of times



ɛ-Greedy Action Selection

In greedy action selection you always exploit

In ɛ-greedy, you are usually greedy but with probability ɛ you pick an 
action at random

This is a simple way of balancing exploration and exploitation





A Ten-Armed Example (Sutton and Barto)



ɛ-Greedy Action Selection





Averaging and Learning Rules
Focussing on a single action so as to avoid notation issues

Note that our estimate of the value of taking some action is the 
average reward collected by taking that action

Can we compute this incrementally without storing all rewards to 
date?

Standard form for learning/update rules



Derivation of the Update Rule



Non-Stationary Problems

What happens when the problem is non-stationary? (i.e. the true 
values change over time)?

Sample average is not an appropriate technique

Instead, exponential, recency-weighted average



Convergence Conditions

• To ensure convergence with probability 1, we require



Optimism and Bandits
• We need to start somewhere with Q1(a), which introduces a 

bias
• So far assumed Q1(a)=0

• We could be optimistic and initialize action values differently 
(Q1(a)=5)



Upper Confidence Bounds
We can reduce exploration over time by using optimism
Estimate an upper bound on the true action values
Select action with largest estimated upper bound



Optimism in the Face of Uncertainty

What action should be picked?
The more uncertain we are about an action-value, the more important it is to 
explore it since it could turn out to be the best action 

D. Silver



Optimism in the Face of Uncertainty

After we have picked the blue action, we are more confident in its value. We are 
now more likely to pick another action.

D. Silver



Upper Confidence Bounds
• We want to estimate an upper confidence Ut(a) for 

each action such that q*(a)≤Qt(a)+Ut(a)

• This depends on the number of times we have 
sampled action a
• Small Nt(a) -> large Ut(a) (estimated value is inaccurate)
• Large Nt(a) -> small Ut(a) (estimated value is accurate)

• Select action maximizing Upper Confidence Bound



How to Determine the Bound

Apply bound to bandit awards



How to Calculate the UCB
Now we pick a probability p that exceeds value of the UCB and 
solve for Ut(a)

Reduce p as observe more rewards, e.g. p=t-4



Summary

• Bandits are the simplest RL models and we will be building on them

• Key challenge is the balance between exploration and exploitation


