CS 486/686: Introduction to
Artificial Intelligence

Reinforcement Learning (Bandits)

Outline

* What is reinforcement learning

 Multiarmed Bandits

What is RL?

* Reinforcement learning is learning what to do so as to maximize a
numerical reward signal

* Learner is not told what actions to take
* Learner discovers value of actions by

- Trying actions out

- Seeing what the reward is

What is RL?

Supervised learning (popt

touch. You

Reinforcement learning

Reinforcement Learning Problem

Agent

State ,
/ / Reward \:tlon

Environment

a0 a1 a2
sO s1 s2 >
r0 r1 r2

Goal: Learn to choose actions that maximize ro+y ri+y’ra+..., where 0-<y <1

Example: Tic Tac Toe (or Backgammon or Go...)

® State: Board configuration

® Actions: Next move X' O' O

X 1s e
winner! '

® Reward: 1 for a win, -1 for a
Prew e
wese art

loss, O for a draw
o T

® Problem: Find r; S >A that ':L’:I:*: X Ol X

maximizes the reward

TD-Gammon

estimated state value
(= prob of winning)

Action selection
by a shallow search

JBGM 0 L 2 € ¥ G 9 L 8 6 OF LLZH LS OL LIS 6102 1222 €T ¥Z GZJeqE

Start with a random Network
Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

Example: AlphaGo

Policy network Value network

p,, @ls) v, &)

* Perceptions: state of the board

* Actions: legal moves

* Reward: +1| or -1 at the end of the game

* Trained by playing games against itself

* Invented new ways of playing which seem superior

Example: Inverted Pendulem

® State: x(t), x'(t), B(t), 6'(t)
® Actions: Force F

® Reward: 1 for any step
where the pole is balanced

® Problem: Find r; S >A that
maximizes the reward

RL + Deep Learing Performance on Atari Games

e ®
BRDR DD
el gane

2 292292
“I tTta

O I

Space Invaders

Breakout

185194
e VsioN

Enduro

Other Applications

 Robotics
e Dexterous manipulations, drone maneuvers

 Datacenter management
 Policies for bringing up and shutting down machines
e Center cooling

* Video compression
* Discovering new algorithms
* Routing Autonomous Vehicles

e Natural Language Proccessing (Reinforcement Learning with Human
Feedback (RLHI%)

* Finance (e.g. portfolio optimization, market making, option pricing)

Reinforcement Learning Characteristics

Delayed reward

- Credit assignment problem

Exploration and exploitation

Possibility that a state is only partially observable

Life-long learning

Reinforcement Learning Model

e Set of states S
e Set of actions A

* Set of reinforcement signals (rewards)

- Rewards may be delayed

Multi-Armed Bandits

The simplest reinforcement
learning problem is the multi-
armed bandit (a one-state RL
problem)

Widely used:

* Experiment design (clinical
trials)

* Online ad placement

* Recommender systems

Thanks to D. Precup

K-armed bandit

At each time step t, you choose an action A, from k possible actions, and
receive reward R,

The reward depends only on the action taken (it is i.i.d)

4 (a) = E[Rt|At — Cl] , Va € {1, Ceey /{} true values

These true values are unknown, and the distribution is unknown
Goal: Maximize your total reward

To achieve this goal you need to try actions to learn their values
(explore) and prefer those that appear best (exploit)

Exploration/Exploitation Tradeoff

Assume you had estimates

Q:(a) ~ q«(a), Va action-value estimates

Define the greedy action as

. = argmax Q+(a)
If A=A,* then you are exploiting ’
If A, #A.* then you are exploring

You can’t do both but you need to do both

Action-Value Methods

Methods that learn action-value estimates and nothing
else

Estimate action values as sample averages:

. t—1
sum of rewards when a taken prior to ¢ Zz’:l R; 14,—q

Qt(a) =

number of times a taken prior to t Zf:i 14,—a

The same average estimate will converge to true
values if the action is taken an infinite number of times

The number of times action a
has been taken by time ¢

e-Greedy Action Selection

In greedy action selection you always exploit

In e-greedy, you are usually greedy but with probability € you pick an
action at random

This is a simple way of balancing exploration and exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

O(a) « 0

N(a) +0

Repeat forever:
4.) argmax, Qla) with probability 1 —¢ (breaking ties randomly)
' a random action with probability £
R + bandit(A)
N(A) < N(A)+1
Q(A) < Q(A) + xig [R - Q(4)]

A Ten-Armed Example suonandsar

g« (a) ~ N(0,1)

4

. Ry ~ N(g«(a),1)
7. (3)
2 'q‘{:’:l
1 7.(9)
= (4)
Reward , _ 23208 __|___ o8 A ¥ B

distribution 6(7) 7.(10)
1 7.(2) g« (8)
o q.(6)
) Run for 1000 steps
-3 Repeat the whole

thing 2000 times
with different bandit
-4 I tasks

e-Greedy Action Selection

15 _
N 0 (greedy)
£ = I
Average areecy
reward
05 4
D | I T |
1 250 500 750 1000
Steps
1005 _
80% PRI PP ———
% % £=001
Optimal RS s
action o= 4
20
ﬁ I 1
1 50 500 750 1000

Steps

A simple bandit algorithm

Initialize, for a = 1 to k:
Qa) + 0
Nla)+0

Repeat forever:

= a random action with probability
R + bandit(A)

N(A)« N(A)+1

Q(A) « Q(A) + xir [R - Q(A)]

arg max, Q(a) with probability 1 — ¢

[

(breaking ties randomly)

Averaging and Learning Rules

Focussing on a single action so as to avoid notation issues

Note that our estimate of the value of taking some action is the
average reward collected by taking that action

Ry +Ry+---+R,_
Qui 5| 2 T tn—1

n—1

Can we compute this incrementally without storing all rewards to
date?

_ _ 1 _
(L)rz-l-l — (d}n + — -Rn — (;,,)n}

I

Standard form for learning/update rules

NewEstimate < OldEstimate + StepSize [Turgvf — OldEstimate

Derivation of the Update Rule

0. = R1+R2+"'+Ru—l

n— 1
1 n
'Qu—l—l — ;ZR;
1=1
| n—1
- ()
n—1
_ 1 Rn+(n—1) ! ZH
- n " n—1 4 i

Non-Stationary Problems

What happens when the problem is non-stationary? (i.e. the true
values change over time)?

Sample average is not an appropriate technique
Instead, exponential, recency-weighted average

(;)ﬂ—}—l = (;.:,n + Q |:-F‘}n — (;.)n:|

= (1 —)"y —|—Z(1{_J_ —)" 'R;.

1=1

where « is a constant step-size parameter, o € (0, 1]

Convergence Conditions

* To ensure convergence with probability 1, we require

' >0

0o
2
E o, (a) = oo and E a; (a) < o

n=1 n=1

1
. (Ve — —
E.g., n . | | i
if ap,=n"?, pe(0,1)
e not an = — then convergence is
. at the optimal rate:

O(1/y/n)

Optimism and Bandits

* We need to start somewhere with Q1(a), which introduces a
bias
e So far assumed Q1(a)=0

* We could be optimistic and initialize action values differently
(O1(a)=R)

100%
optimistic, greedy
0,=5.€=0

80%

% 60% - realistic, e-greedy
Optimal Q,=0,e=01
action 40%-
20% -
0% =7 T T T T]
1 00 400 600 800 1000

Upper Confidence Bounds

We can reduce exploration over time by using optimism
Estimate an upper bound on the true action values

Select action with largest estimated upper bound

loo ¢
A = argmax |Q¢(a) + ¢ =
f ; [* N¢(a)]

11 o : [st _ Laksd
UCB. éi.w“w-r%..m*-huwmwwwww"ﬂ-'f-"*"-“-*r'*‘-'-‘T"*n*“'ﬁ'-"'“-’"
et R B RA S
1 l..*'
IH':# I
I-'n
il
Average W
reward

05k

Steps

Optimism in the Face of Uncertainty

pQ)

What action should be picked?
The more uncertain we are about an action-value, the more important it is to
explore it since it could turn out to be the best action

D. Silver

Optimism in the Face of Uncertainty

After we have picked the blue action, we are more confident in its value. We are
now more likely to pick another action.

D. Silver

Upper Confidence Bounds

* We want to estimate an upper confidence U,(a) for
each action such that g*(a)<Q,(a)+U,(a)

* This depends on the number of times we have
sampled action a

 Small Nt(a) -> large Ut(a) (estimated value is inaccurate)
e Large Nt(a) -> small Ut(a) (estimated value is accurate)

e Select action ~~imizin~ Hnnae Canfidence Bound
Ay = arg max :{.L}f[”} + U, (u]]

How to Determine the Bound

Let Xi,...,X: be i.i.d. random variables in [0,1], and let
Xi= L5 | X, be the sample mean. Then

P[E[X] > X; + u] < 728"

Apply bound to bandit awards

P[q:{”] > (g;{ﬁ'] 4 {'r{”]] i P—'.-_.:'_"l.'t{a]['r.l:u:l'_’

How to Calculate the UCB

Now we pick a probability p that exceeds value of the UCB and
solve for Ut(a)

e 2N:(2)Ui(2)? _

—log p
Urla) = \/ 2N:(a)

Reduce p aS ObseI"\IQ manro V‘Q\AI‘JV‘AC 0o I’\—t'4

o= i

Summary

* Bandits are the simplest RL models and we will be building on them

* Key challenge is the balance between exploration and exploitation

