
CS 486/686: Introduction to 
Artificial Intelligence

Decision Theory



Plan for Today

• Introduction to Utility Theory
• Principle of Maximum Expected Utility
• Decision Networks
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Decision Making Under Uncertainty

I give a robot a planning problem: “ I want coffee”
But the coffee maker is broken: Robot reports “No plan!”
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Decision Making Under Uncertainty
I want more robust behaviour

I want my robot to know what to do when my primary goal 
is not satisfied

Provide it with some indication of my preferences over 
alternatives

e.g. coffee better than tea, tea better than water, water better than nothing,...
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Decision Making Under Uncertainty

• But it is more complicated than that
• The robot could wait 45 minutes for the coffee machine to be fixed

• What is better?
• Tea now?
• Coffee in 45 minutes?
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Preferences

A preference ordering ≿ is a ranking over all possible 
states of the world s
These could be outcomes of actions, truth 
assignments, states in a search problem, etc

s ≿ t: state s is at least as good as state t

s > t: state s is strictly preferred to state t

s ~ t: agent is ambivalent between states s

CS 486/686 F23 6



Preferences

If an agent’s actions are deterministic, then we know what states 
will occur

If an agent’s actions are not deterministic, then we represent 
this by lotteries

Probability distribution over outcomes

Lottery L=[p1,s1;p2,s2;…;pn,sn]

s1 occurs with probability p1, s2 occurs with probability p2, 
...
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Axioms
Orderability: Given 2 states A and B

(A≿B)⋁(B≿A)⋁(A~B)

Transitivity: Given 3 states A, B, C
(A≿B)⋀(B≿C)→(A≿C)

Continuity:
A≿B≿C→Exists p, [p,A;(1-p),C]~B

Substitutability
A~B→[p,A;1-p,C]~[p,B,1-p,C]

Monotonicity:
(A≿B)→(p≥q↔[p,A;1-p,B]≿[q,A;1-q,B]

Decomposability
[p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]
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Why Impose These Conditions?

• Structure of preference ordering imposes certain “rationality 
requirements”
• It is a weak ordering

• Example: Why transitivity?
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A>B>C>A



Utilities

Rather than just ranking outcomes, we need to quantify our 
degree of preference

How much more we prefer one outcome to another (e.g c to ~mess)

A utility function U:S→R associates a real-valued utility to each 
outcome

Utility measures your degree of preference for s

U induces a preference ordering ≿U over S where s≿Ut if and 
only if U(s)≥U(t)
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Expected Utility

• If there is uncertainty, then we use expected utility
• Pd(s) is the probability of outcome s under decision d
• The expected utility of decision d is EU(d)=∑s in S Pd(s)U(s)

• The Principle of Maximum Expected Utility: the optimal decision under 
conditions of uncertainty is the one with the greatest expected utility. 
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Notes on Expected Utility

• Utility functions need not be unique
• If you multiply U by a positive constant, all decisions have the 

same relative utility

• If you add a constant to U, then the same thing is true

• U is unique up to a positive affine transformation
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If d*=argmaxd Pr(d)U(d)
then

d*=argmaxdPr(d)[aU(d)+b]
a>0



Decision Networks (Influence Diagrams)

• Decision networks (aka influence diagrams) 
provide a representation for sequential decision 
making

• Basic idea
• Random variables like in Bayes Nets

• Decision variables that you “control”

• Utility variables which state how good certain states are

CS 486/686 F23 13



CS 486/686 F23 14

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional



Chance Nodes

• Random variables (denoted by circles)
• Like as in a BN, probabilistic dependence on parents
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Disease

TstResult

Fever

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt) = 0
Pr(neg|D,~bt) = 0
Pr(null|D,~bt) = 1Pr(f|flu) = .5

Pr(f|mal) = .3
Pr(f|none) = .05

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6



Decision Nodes

• Variables the decision maker sets (denoted by squares)

• Parents reflect information available at time of decision
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Chills

Fever
BloodTst BT ∊ {bt, ~bt}



Value Node

• Specifies the utility of a state (denoted by a diamond)
• Utility depends only on state of parents
• Generally, only one value node in a network
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Disease

Drug

U

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30



Assumptions

• Decision nodes are totally ordered
• Given decision variables D1,..., Dn, decisions are made in sequence

• No forgetting property
• Any information available for decision Di remains available for decision Dj where j>i

• All parents of Di are also parents for Dj
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Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
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property



Policies

• Let Par(Di) be the parents of decision node Di

• Dom(Par(Di)) is the set of assignments to Par(Di)

• A policy δ is a set of mappings δi, one for each decision node Di

• δi(Di) associates a decision for each parent assignment 
• δi:Dom(Par(Di))→Dom(Di)
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Chills

Fever
BloodTst

δBT(c,f)=bt
δBT(c,~f)=~bt
δBT(~c,f)=bt
δBT(~c,~f)=~bt



Value of a Policy

• Expected utility given that all decision nodes are executed according 
to the policy

• An optimal policy δ* is such that EU(δ*)≥EU(δ) for all δ
• We can use dynamic programming to avoid enumerating all possible 

policies
• We can also use the BN structure and Variable Elimination to aid the 

computation
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Computing the Optimal Policy

• Work backwards as follows
• Compute optimal policy for Drug
• For each asst to parents (C,F,BT,TR) and for each decision value (D = 

md,fd,none), compute the expected value of choosing that value of D 
• Set policy choice for each value of parents to be the value of D that has max 

value
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Computing the Optimal Policy

• Next compute policy for BT, given policy δD(C,F,BT,TR) just computed
• Since δD is fixed, we treat D as a random variable with deterministic 

probabilities
• Solve for BT just like you did for D
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Computing the Optimal Policy

• How do we compute these expected values?
–Suppose we have asst <c,f,bt,pos> to parents of Drug
–We want to compute EU of deciding to set Drug = md
–We can run variable elimination!
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Computing the Optimal Policy

• Treat C, F, BT, Tr, Dr as evidence
• This reduces the factors
• Eliminate remaining variables (Dis)
• Left with factor U()=ΣDis P(Dis | c,f,bt,pos,md)U(Dis,md,bt)

• We now know EU of doing Dr=md when  c,f,bt,pos
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Computing the Optimal Policy

• Computing expected utilities with BNs is straightforward
• Utility nodes are just factors that can be dealt with using variable 

elimination
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U

C

B

A

EU = ΣA,B,C P(A,B,C) U(B,C)

= ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)



Example

• You want to buy a used car, but there is some chance it is a “lemon” 
(i.e. it breaks down often). Before deciding to buy it, you can take it to 
a mechanic for an inspection. S/he will give you a report, labelling the 
car as either “good”  or “bad”. A good report is positively correlated 
with the car not being a lemon while a bad report is positively 
correlated with the car being a lemon
• The report costs $50. You could risk it and buy the car with no report.
• Owning a good car is better than no car, which is better than owning a 

lemon.
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Example
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Lemon

Report

Inspect Buy

U

g      b     n

 l  i   0.2   0.8   0
~l i   0.9   0.1    0
l ~i    0      0     1
~l ~i  0      0     1

Rep: good,bad,none

b   l   -600
 b ~l   1000
~b l    -300
~b~l   -300

Utility

-50 if
inspect

l     ~l
0.5 0.5



Value of Information

• Information has value
• To the extent it is likely to cause a change of plan
• To the extent that the new plan will be significantly better than the 

old plan

• The value of information is non-negative
• This is true for any decision-theoretic agent (but not necessarily 

true for multi-agent settings)

CS 486/686 F23 28


