Machine Learning

CS 486/686: Introduction to AI
Outline

• Decision Trees
• Overfitting
• Cross Validation
• Ensembles
Decision Trees

Decision trees classify instances by sorting them down the tree from root to leaf

- Nodes correspond with a test of some attribute
- Each branch corresponds to some value an attribute can take

Classification algorithm

- Start at root, test attribute specified by root
- Move down the branch corresponding to value of the attribute
- Continue until you reach leaf (classification)
Decision Trees

Note: Decision trees represent disjunctions of conjunctions of constraints on attribute values

An instance

<Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong>

Classification: No
Decision Tree Representation

Decision trees are fully expressive within the class of propositional languages.

Any Boolean function can be written as a decision tree.

No representation is efficient for all functions.
Inducing a Decision Tree

Aim: Find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

```plaintext
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return MODE(examples)
    else
        best ← CHOOSE-ATTRIBUTE(attributes, examples)
        tree ← a new decision tree with root test best
        for each value \( v_i \) of \( \text{best} \) do
            examples_i ← {elements of examples with \( \text{best} = v_i \)}
            subtree ← DTL(examples_i, attributes \( - \) best, MODE(examples))
            add a branch to \( \text{tree} \) with label \( v_i \) and subtree \( \text{subtree} \)
        return \( \text{tree} \)
```
Example: Restaurant

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>$Price$</th>
<th>$Rain$</th>
<th>Res</th>
<th>$Type$</th>
<th>Est</th>
<th>$Wait$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
</tr>
</tbody>
</table>
Choosing an Attribute

• There are different ways of selecting attributes, but generally a “good attribute” splits the training examples appropriately.
Using Information Theory

Information content (Entropy):

\[I(P(v_1), \ldots, P(v_n)) = \sum_{i=1}^{n} (-P(V_i) \log_2 P(V_i)) \]

For a training set containing \(p \) positive examples and \(n \) negative examples

\[I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n} \]
Information Gain

Chosen attribute A divides the training set E into subsets $E_1, ..., E_v$ according to their values for A, where A has v distinct values

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Information Gain (IG) or reduction in entropy from the attribute test:

$$IG(A) = I\left(\frac{p}{p + n}, \frac{n}{p + n}\right) - remainder(A)$$
Choosing an Attribute

- There are different ways of selecting attributes, but generally a “good attribute” splits the training examples appropriately.
Decision Tree Example

Decision tree learned from 12 examples

Substantially simpler than “true” tree

A more complex hypothesis isn’t justified by the small amount of data
Assessing Performance

A learning algorithm is **good** if it produces a hypothesis that does a good job of predicting classifications of unseen examples.

There are theoretical guarantees (learning theory).

Can also test this.
Assessing Performance

Test set

• Collect a large set of examples
• Divide them into 2 disjoint sets (training set and test set)
• Apply learning algorithm to training set to get h
• Measure percentage of examples in the test set that are correctly classified by h
Learning Curve

As the training set grows, accuracy increases.
No Peeking at the Test Set

A learning algorithm should not be allowed to see the test set data before the hypothesis is tested on it

No Peeking!!

Every time you want to compare performance of a hypothesis on a test set you should use a new test set!
Overfitting

Why might a consistent hypothesis have a high error rate on a test set?

Given a hypothesis space H, a hypothesis h in H is said to overfit the training data if there exists some alternative hypothesis h’ in H such that h has smaller error than h’ on the training examples, but h’ has smaller error than h over the entire distribution of instances.

h in H overfits if there exists h’ in H such that \(\text{error}_{\text{Tr}}(h) < \text{error}_{\text{Tr}}(h’) \) but \(\text{error}_{\text{Te}}(h’) < \text{error}_{\text{Te}}(h) \)
Overfitting

• Overfitting has been found to decrease accuracy of decision trees by 10-25%
Overfitting

Test errors caused by

• **Bias**: the error due to the algorithm finding an imperfect model
 • Representation bias: model is too simple
 • Search bias: not enough search

• **Variance**: error due to lack of data

• **Noise**: error due to data depending on features not modeled or because the process generating data was inherently stochastic

• **Bias-Variance Trade-Off**:
 • Complicated model, not enough data (low bias, high variance)
 • Simple model, lots of data (high bias, low variance)
Avoiding Overfitting

• Regularization: Prefer small decision trees over large ones so add a complexity penalty to the stopping criteria (stop early)

• Pseudocounts: Add some data based on prior knowledge

• Cross validation
Cross Validation

• Split your training set into a training and a validation set

• Use the validation set as a “pretend” test set

• Optimize the hypothesis/classifier/etc to perform well on the validation set, not the training set

• Can do this multiple times with different validation sets
 • K-fold validation, leave-one-out validation

• When measuring actual performance, report performance on test set
Ensembles

• So far we have discussed learning as though it followed a single general approach
 • Choose a single hypothesis from the hypothesis space
 • Use it to make predictions/classifications

• What happens if we want to use many hypotheses and combine their predictions?
Ensembles

• Analogies
 • Elections, committees

• Intuition
 • Individuals may make mistakes, but the majority may be less likely to make a mistake
 • Individuals have partial information but committees can pool their expertise

• Using ensembles can also enlarge the hypothesis space
Ensembles: Bagging

Majority voting:

Instance

For the classification to be wrong, at least 3 out of 5 hypothesis have to be wrong
Ensembles: Bagging

• Assumptions:
 • Each h_i makes an error with probability p
 • Hypothesis are independent

• Majority voting of n hypothesis
 • Probability k made an error?
 • Probability that the majority made an error?
Bagging Example: Random Forests

• Do K times
 • Randomly sample (with replacement) subsets of your training data
 • Randomly sample subsets of features (feature bagging)
 • Learn a decision tree using the subset of features

Classify using a majority vote of the k trees in your forest.
Ensembles: Boosting

• In practice hypothesis are rarely independent and some are more error-prone than others

• Weight majority:
 • Decrease weights of correlated hypothesis
 • Increase weights of good hypothesis

• Boosting
Ensembles: Boosting

Training set \[h_1 \] Training set

Training set \[h_2 \] Training set

Increased the weights of the misclassified examples
Ensembles: AdaBoost

function ADABOOST(examples, L, K) returns a weighted-majority hypothesis
inputs: examples, set of N labeled examples $(x_1, y_1), \ldots, (x_N, y_N)$
 L, a learning algorithm
 K, the number of hypotheses in the ensemble
local variables: w, a vector of N example weights, initially $1/N$
 h, a vector of K hypotheses
 z, a vector of K hypothesis weights

for $k = 1$ to K do
 $h[k] \leftarrow L(\text{examples, } w)$
 error $\leftarrow 0$
 for $j = 1$ to N do
 if $h[k](x_j) \neq y_j$ then error \leftarrow error + $w[j]$
 for $j = 1$ to N do
 if $h[k](x_j) = y_j$ then $w[j] \leftarrow w[j] \cdot$ error$/ (1 - \text{error})$
 $w \leftarrow \text{NORMALIZE}(w)$
 $z[k] \leftarrow \log (1 - \text{error})/\text{error}$
return WEIGHTED-MAJORITY(h, z)
Ensembles: Boosting

K=5
Ensembles: Boosting

• Many variations of boosting (AdaBoost is a specific boosting algorithm)

 • Takes a weak learning L (classifies slightly better than just random guessing) and returns a hypothesis that classifies training data with 100% accuracy

Robert Schapire and Yoav Freund
Kanellakis Award for 2004
What You Should Know

• How to learn a decision tree
• Overfitting and its causes
• Cross validation
• Ensembles (bagging and boosting)