CS 486/686: Introduction to Artificial Intelligence _{Causality}

Plan for Today

- Example using HMMs
- Introduction to Causality

HMM Example

 Imagine we are trying to figure out what the weather was sometime in the past. However, we have lost the temperature data. But we do have a copy of Kate's diary where she recorded how many ice cream cones she ate each day! What can we infer about the weather?

HMM Example

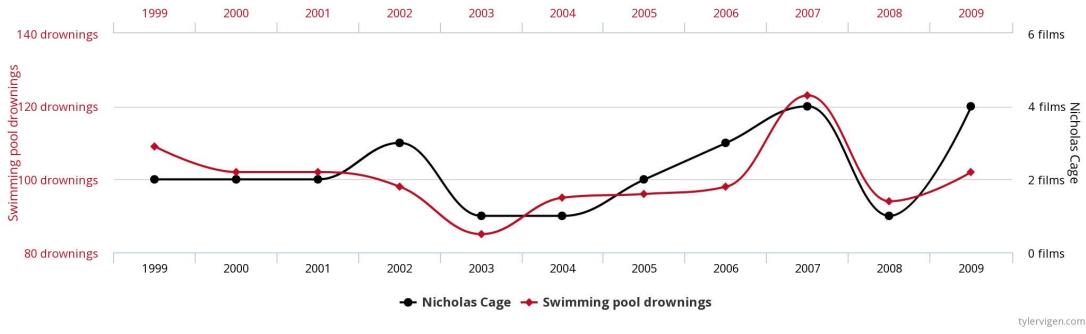
- States = {H, C}
- Observations {1 ice cream, 2 ice creams, 3 ice creams}
- Prior: P(H)=0.8, P(C)=0.2
- Dynamics: P(H|H)=0.6, P(H|C)=0.5
- Observation Model:

	н	С
1 Ice Cream	0.2	0.5
2 Ice Creams	0.4	0.4
3 Ice Creams	0.4	0.1

Introduction to Causality

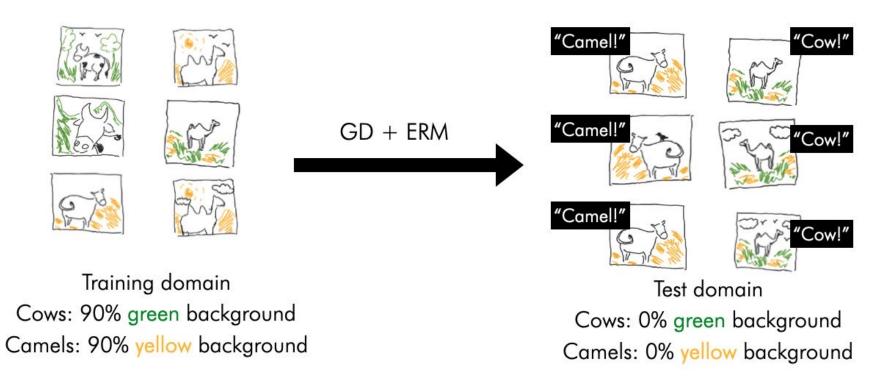
- Causality is the study of how things influence each other (causes lead to effects)
- Causal dependence: X causes Y if and only if changes to X lead to changes in Y
 - Example: Diseases cause symptoms, but symptoms do not cause diseases

Causality and Correlation (not the same thing!)


- A joint distribution P(X,Y) captures correlations between X and Y but does not capture whether a causal relation exists between X and Y, nor the direction of the causal relation if one does exist
- A conditional distribution P(X|Y) does not necessarily indicate X causes Y

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

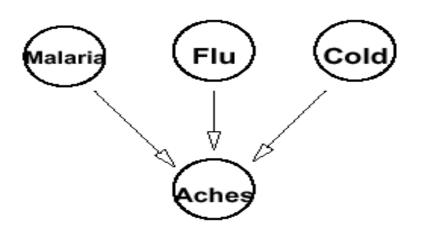
Spurious Correlations

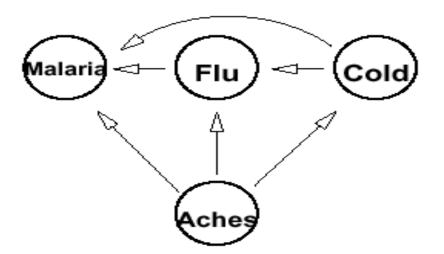

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

https://www.tylervigen.com/spurious-correlations

Spurious Correlations


Standard example (Beery et al., '18 Arjovsky et al., '19)

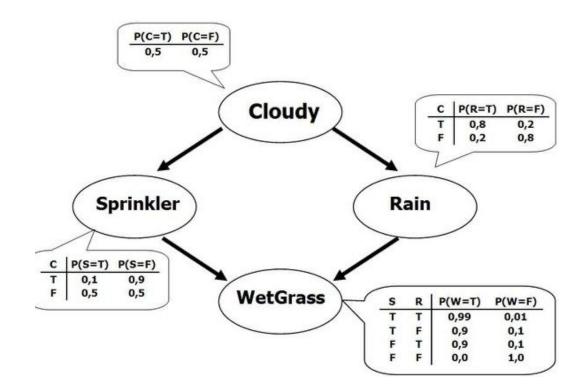

CS 486/686 F23

Causal Bayes Net

• Bayes Net where all edges indicate direct causal effects.

Probabilistic Inference Causal Inference

Probabilistic Inference


Causal Inference

- Intervention: What is an effect of an action?
 - E.g. what is the effect of a treatment?

Causal networks support intervention queries but non-causal networks do not.

Classic Causal Example

- Observation: What is the likelihood that the grass is wet when the sprinkler is observed to be on?
 - P(WG|S=true)
- Intervention: How does turning on the sprinkler affect the grass?
 - P(WG|**do**(S=true))

Inference with Do Operator

Given a causal graph and query P(X|do(Y=y), Z)

- Remove edges pointing to Y and Parents(Y)
- Perform Variable Elimination on remaining graph
 - Restrict factors to evident Y=y, Z=z
 - Eliminate variables
 - Multiply remaining factors and normalize

What you should know

- Correlation does not imply causation!
- Causal Bayes Nets
 - Probabilistic inference vs causal inference and the do operator