
CS 486/686: Introduction to 
Artificial Intelligence
Reasoning Under Uncertainty



Plan for Today

• Quick review of basic probability
• Bayesian Networks

• What they are
• What they mean
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Basics of Probability

• Probability Distribution
• A specification of a probability for every event in our sample space
• Probabilities are non-negative and must sum to 1

• Joint Probability Distribution
• Often the world is described by two or more random variables
• A joint distribution specifies probabilities for all combinations of events
• Given two random variables A and B, the joint distribution P(A=a, B=b) for all a,b
• Marginalization (sumout rule)

• 𝑃 𝐴 = 𝑎 = ∑!𝑃(𝐴 = 𝑎, 𝐵 = 𝑏)
• 𝑃 𝐵 = 𝑏 = ∑"𝑃(𝐴 = 𝑎, 𝐵 = 𝑏)
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Basics of Probability Distributions
Example: Joint Distribution
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache^sunny^cold)=0.108  P(~headache^sunny^~cold)=0.064

P(headache V sunny) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

P(headache)=0.108+0.012+0.072+0.008=0.2

marginalization
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Basics of Probability

• Conditional Probability
• P(A|B): fraction of worlds in which B is true that also have A being true

• 𝑃 𝐴 𝐵 = ! ",$
! %

• Chain Rule: 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵

• Bayes Rule: 𝑃 𝐵 𝐴 = ! 𝐴 𝐵 !(%)
!(")
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Memorize these!!



Bayes Rules and Inference

• Often we want to form a hypothesis about the world given what we 
have observed
• Bayes rule allows us to compute a belief about hypothesis H, given 

evidence e
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Using Bayes Rule for Inference

• Often we want to form a hypothesis about the world based 
on what we have observed

• Bayes rule is vitally important when viewed in terms of 
stating the belief given to hypothesis H, given evidence e

27

Posterior probability

Prior probability
Likelihood

Normalizing constant



Basics of Probability
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Example: Joint Distribution

4

cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache ^ cold| sunny)= P(headache ^ cold ^ sunny)/P(sunny) 

= 0.108/(0.108+0.012+0.016+0.064)

= 0. 54

P(headache ^ cold| ~sunny)= P(headache ^ cold ^ ~sunny)/P(~sunny) 

= 0.072/(0.072+0.008+0.144+0.576)

= 0.09



Challenges 

• How do we specify the full joint distribution over a set of n random 
variables?

• What if we want to determine the distribution over a single variable 
in our joint distribution?
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Independence and Conditional Independence

• Two variables A and B are independent if knowledge of A does not 
change uncertainty of B (and vice versa)

• P(A|B)=P(A)
• P(B|A)=P(B)
• P(A,B)=P(A)P(B) and more generally P(A1,A2,…,An)=∏!𝐴𝑖

• Two variables A and B are conditionally independent given variable C 
if knowing the value of B does not change the uncertainty of A (and 
vice versa) if the value of C is known

• P(A|C)=P(A|B,C)
• P(B|C)=P(B|A,C)
• P(A,B|C)=P(A|C)P(B}C)
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Why Do We Care About Independence

• If we have n Boolean independent random variables, we only need n 
parameters to specify the full joint distribution (instead of 2n-1)

• Furthermore, inference becomes O(n) instead of O(2n)!
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CS486/686 Spring 2023 - Lecture 5 - Pascal Poupart

§ 4 independent Boolean random vars 31, 32, 33, 34
Pr(E1) = 0.4, Pr(E2) = 0.2, Pr(E3) = 0.5, Pr(E4) = 0.8

Pr(EE, ~E\, E], E^) = Pr EE 1 − Pr E\ Pr(E]) Pr(E^)
                            =	 (0.4)(0.8)(0.5)(0.8)
                            = 	0.128
Pr(EE, E\, E]|E^) = Pr(EE) Pr(E\) Pr(E]) N

                            = (0.4)(0.2)(0.5)(1)
                            = 0.04

21

Example



Leveraging Independence 

• While most domains do not exhibit full independence, many do have 
a fair amount of conditional independence

• We want to exploit conditional independence for both representation and 
reasoning

Bayesian Networks do exactly this
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Notation Break

• P(X) for variable X (or set of variables) refers to (marginal) 
distribution over X

• Distinguish between P(X) (distribution) and P(x) (numbers)
• Think of P(X) as a function that accepts any xi in Dom(X) and returns a 

number

• P(X|Y) is the family of conditional distributions over X (one for 
each y in Dom(Y)
• Think of P(X|Y) as a function that accepts any xi and yk and returns     

P(xi|yk)
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Exploiting Conditional Independence
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Consider the following story
If Kate woke up too early (E), she probably needs coffee (C); if Kate 
needs coffee (C), she is likely to be grumpy (G). If she is grumpy, then 
it’s possible that the lecture won’t go smoothly (L). If the lecture does 
not go smoothly, then the students will likely be sad (S).

E C L SG

E – Kate woke too early     G – Kate is grumpy     S – Students are sad
                 C – Kate needs coffee     L– The lecture did not go smoothly



Conditional Independence
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• If you learned any of E, C, G, or L then your assessment of 
P(S) would change
• if any of these are seen to be true, you would increase P(s) and 

decrease P(~s)
• So S is not independent of E, C, G, or L

E C L SG



Conditional Independence
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But if you knew the value of L (true or false) then 
learning the values of E, C, or G would not influence P(S)
• Students are not sad because Kate did not have a coffee, they 

are sad because of the lecture

• So S is independent of E, C, and G, given L

E C L SG



Conditional Independence
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E C L SG

Similarly
• L is independent of E and C, given G
• G is independent of E given C

This means that
• P(S|L,{G,C,E})=
• P(L|G, {C,E})=
• P(G|C,{E})=
• P(C|E)=
• P(E)=



Conditional Independence
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E C L SG

• By the chain rule
• P(S,L,G,C,E)=?

• By our independence assumptions
• P(S,L,G,C,E)=?

• We can specify the full joint by specifying five 
conditional distributions: P(S|L), P(L|G), P(G|C), P(C|E) 
and P(E)



Example Quantification

• Specifying the joint requires only 9 parameters instead of 31 for explicit 
representation
- linear in number of vars instead of exponential

- linear in general if dependence has a chain structure
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E C L SG

Pr(e)   = 0.7
Pr(~e) = 0.3

Pr(c|e)     = 0.9
Pr(~c|e)   = 0.1
Pr(c|~e)   = 0.5
Pr(~c|~e) = 0.5

Pr(g|c)     = 0.3
Pr(~g|c)   = 0.7
Pr(g|~c)   = 1.0
Pr(~g|~c) = 0.0

Pr(l|g)     = 0.2
Pr(~l|g)   = 0.8
Pr(l|~g)   = 0.1
Pr(~l|~g) = 0.9

Pr(s|l)     = 0.9
Pr(~s|l)   = 0.1
Pr(s|~l)   = 0.1
Pr(~s|~l) = 0.9
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Example 

Specifying the joint requires only 9 parameters instead of 31 for explicit representation
• linear in number of vars instead of exponential

• linear in general if dependence has a chain structure



Inference is Easy

Inference is easy

• Want to know P(g)? Use marginalization!

19

E C L SG

These are all terms specified in our local distributions!
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E C L SG



Bayesian Networks

• A Bayesian network is a graphical representation of direct 
dependencies over a set of variables + a set of conditional probability 
distributions (CPTs) quantifying the strength of the influences
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Bayesian Networks 
(aka belief networks, causal networks, probabilistic networks...)

• A BN over a set of variables {X1,...,Xn} consists of
- A directed acyclic graph whose nodes are the variables

- A set of CPTs (P(Xi|Parents(Xi)) for each Xi

22

A

C

BP(a)
P(~a)

P(b)
P(~b)

P(c|a,b)     P(~c|a,b)
P(c|~a,b)   P(~c|~a,b)
P(c|a,~b)   P(~c|a,~b)
P(c|~a,~b) P(~c|~a,~b)

A BN over a set of variables {X1,..,Xn} consists of
• A direct acyclic graph whose nodes are the 

variables
• A set of CPTs P(Xi|Parents(Xi)) for each Xi



Bayesian Networks 

• Parents of a node
• Children of a node
• Descendents of a node
• Ancestors of a node
• Family: set of nodes consisting of X and its 

parents
• CPTs are defined over families
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A

C

B

D

Parents(C)={A,B}
Children(A)={C}
Descendents(B)={C,D}
Ancestors{D}={A,B,C}
Family{C}={C,A,B}



Bayesian Network
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Bayes Net Example

• A couple CPTS 
are “shown”

• Explicit joint 
requires 211 -1 
=2047 params

• BN requires only 
27 parms (the 
number of 
entries for each 
CPT is listed)

24



Semantics

The structure of Bayesian Network means: every Xi is conditionally 
independent of all of its non-descendants given its parents
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Semantics

The structure of the BN means: every Xi is 
conditionally independent of all of its 
nondescendents given its parents

25

Pr(Xi | S ∪ Par(Xi)) = Pr(Xi | Par(Xi))

for any subset S of the NonDescendants(Xi)



Semantics

• Query P(x1,x2,…,xn)
= P(xn|xn-1,…,x1)P(xn-1|xn-2,…,x1)P(xn-2|xn-3,…,x1)…P(x1)
= P(xn|Par(xn))P(xn-1|Par(xn-1))…P(x1)
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Bayesian Network
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Bayes Net Example

• A couple CPTS 
are “shown”

• Explicit joint 
requires 211 -1 
=2047 params

• BN requires only 
27 parms (the 
number of 
entries for each 
CPT is listed)

24



Constructing a BN
Given any distribution over variables X1,X2,...,Xn, we can construct a BN 
that faithfully represents that distribution
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Take any ordering of the variables (say, the order given), and go through the 
following procedure for Xn down to X1. Let Par(Xn) be any subset S ⊆ 
{X1,…, Xn-1} such that Xn is independent of {X1,…, Xn-1} - S given S. Such a 
subset must exist. Then determine the parents of Xn-1 in the same way, 
finding a similar S ⊆ {X1,…, Xn-2}, and so on. In the end, a DAG is produced 
and the BN semantics must hold by construction.



Causal Intuitions
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The construction of a BN is simple
Works with arbitrary orderings of variable set

But some orderings are much better than others
Generally, if ordering/dependence structure reflects causal intuitions, we get a 
more compact BN



Causal Intuitions
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We could have used the ordering Aches, 
Cold, Flu, Malaria. Note that the CPTs would 
be different but this would still capture the 
same joint distribution.

In this BN we’ve used the ordering 
Malaria, Cold, Flu, Aches to build BN 
for distribution P.
Note the variables can only have 
parents that come earlier in the 
ordering.



Compactness of the Representation

• In general, if each random Boolean variable is directly influenced by 
at most k others, then each CPT will be of size at most 2k. Thus, the 
entire network can be specified by n2k parameters.
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1+1+1+8=11 numbers 1+2+4+8=15 numbers



Testing Independence

We can use the structure of a BN to recognize variable independence 
given some evidence E. 

D-separation: A set of variables, E, d-separates X and Y if it blocks every 
undirected path between X and Y.

X and Y are conditionally independent given E if E d-separates X and Y.
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Blocking

P is an undirected path from X to Y in BN. Let E be 
evidence set. E blocks path P iff there is some node 
in Z on the path such that
• Case 1: one arc on P goes into Z and one goes out of Z 

and Z in E, or

• Case 2: both arcs on P leave Z and Z in E, or

• Case 3: both arcs on P enter Z and neither Z, nor any of its 
descendents, are in E
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Blocking
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Example
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1. Subway and 
Thermometer?

2. Aches and Fever?

3. Aches and 
Thermometer?

4. Flu and Malaria?

5. Subway and 
ExoticTrip?



Inference in Bayesian Networks

• Independence allows us to compute prior and posterior probabilities 
effectively.
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P(J)=

P(J|ET) = 

P(Fev)=

P(Fev| TS=ts, Mal=~m) = 



Simple Backward Inference
When evidence is “downstream” of a query variable then you must use 
Bayes Rule.
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P(ET|J=j)=

P(ET|J=j, Fev=fev) = 



Variable Elimination

What about general BNs?
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P(H|A,F)=?



Variable Elimination

An inference procedure that simply applies the summing-out rule 
(marginalization) repeatedly

Exploits independence in network and distributes the sum inward
Basically doing dynamic programming

CS 486/686 37



Factors

• A function f(X1,...,Xk) is called a factor
• View this as a table of numbers, one for each instantiation of the 

variables
• Exponential in k

• Each CPT in a BN is a factor
• P(C|A,B) is a function of 3 variables, A, B, C
• Represented as f(A,B,C)

• Notation: f(X,Y) denotes a factor over variables X∪Y
• X and Y are sets of variables
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Product of Factors

• Let f(X,Y) and g(Y,Z) be two factors with variables Y in common
• The product of f and g, denoted by h=fg is 

• h(X,Y,Z)=f(X,Y) x g(Y,Z)
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f(A,B) g(B,C) h(A,B,C)
ab 0.9 bc 0.7 abc 0.63 ab~c 0.27
a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02
~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12
~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12



Summing a Variable Out

• Let f(X,Y) be a factor with variable X and variable set Y

• We sum out variable X from f to produce h=∑Xf where 
h(Y)=∑x∈Dom(X) f(x,Y)
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f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6



Restrict a Factor

• Let f(X,Y) be a factor with variable X
• We restrict factor f to X=x by setting X to the value x and “deleting”. 

Define h=fX=x as: h(Y)=f(x,Y)
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f(A,B) h(B) = fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6



Variable Elimination: No Evidence

• Computing prior probability of query variable  X  can be seen as applying 
these operations on factors

• P(C) = ΣA,B P(C|B) P(B|A) P(A)
= ΣB P(C|B) ΣA P(B|A) P(A)
= ΣB f3(B,C) ΣA f2(A,B) f1(A) 
= ΣB f3(B,C) f4(B)
= f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB f3(B,C) f4(B)

CS 486/686 42

B CA
f1(A) f2(A,B) f3(B,C)



Variable Elimination: No Evidence
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B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8



Variable Elimination: No Evidence
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P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
         = ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
         = ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 
         = ΣC f4(C,D) ΣB f2(B) f5(B,C)
         = ΣC f4(C,D) f6(C)
         = f7(D)
Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)



VE Algorithm

Given query variable Q, remaining variables Z. Let F be the set of 
factors corresponding to CPTs for Q and Z.
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1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj   -- in the order given --  eliminate Zj ∊ Z 
    as follows:
 (a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  
                  where the fi are the factors in F that include Zj   
 (b) Remove the factors  fi   (that mention Zj ) from F 
                 and add new factor  gj   to  F
3. The remaining factors refer only to the query variable Q. 
   Take their product and normalize to produce P(Q)



Revisiting the Example
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Factors: f1(A) f2(B) f3(A,B,C) 
f4(C,D) 

Query: P(D)?  
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A) 
Remove: f1(A), f3(A,B,C) 

Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
Remove: f2(B) , f5(B,C) 

Step 3: Add f7(D) = ΣC f4(C,D) f6(C) 
Remove: f4(C,D), f6(C) 

Last factor f7(D) is (possibly unnormalized) probability P(D)



VE: Evidence
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Computing posterior of query variable given evidence is similar; suppose we 
observe C=c:

   P(A|c) = α P(A) P(c|A)
            = α P(A) ΣB P(c|B) P(B|A)
            = α f1(A) ΣB f3(B,c) f2(A,B) 
            = α f1(A) ΣB f4(B) f2(A,B)
            = α f1(A) f5(A)
            = α f6(A)
New factors:  f4(B)= f3(B,c);   f5(A)= ΣB f2(A,B) f4(B);  
              f6(A)= f1(A) f5(A) 

B CA
f1(A) f2(A,B) f3(B,C)



VE Algorithm

Given query variable Q, evidence E=e, remaining variables Z. Let F be 
the set of factors corresponding to CPTs for Q and Z.
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1. Replace each factor f∊F that mentions a variable(s) in E
    with its restriction fE=e (somewhat abusing notation) 
2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run VE as before.
4. Until remaining factors refer only to Q. Take their product and

normalize to produce P(Q).



Example
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Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(A)?  
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)



VE Notes

• Each iteration eliminates one variable
• No factor contains evidence variables after the initial restriction
• Number of iterations is linear in number of variables

• Complexity is linear in number of variables but exponential in the size 
of the largest factor

• Recall each factor is exponential in its number of variables
• Can’t do better than size of the BN (since its original CPTs are part of the 

factor set)
• But when we create new factors we might make significantly larger factors.
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Elimination Ordering: Polytrees

• Inference is linear in the size of the network
• Ordering: Eliminate “singly-connected” nodes
• Result: No factor ever grows larger than original factors

• What happens if we eliminated B first?
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Effects of Different Orderings

• Suppose query variable is D. Consider different orderings for this 
network

• A,F,H,G,B,C,E: Good

• E,C,A,B,G,H,F: Bad
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Relevance
• Certain variables have no impact on the query

• In ABC network, computing P(A) with no evidence requires elimination of B 
and C
• But when you sum out these variables, you compute a trivial factor
• Eliminating C: g(C)=∑Cf(B,C)=∑CPr(C|B). 
• Note that P(c|b)+P(~c|b)=1 and P(c|~b)+P(~c|~b)=1

• Can restrict ourselves to relevant variables
• Given query Q, evidence E
• Q is relevant
• If any node Z is relevant, its parents are relevant
• If E∈E is a descendant of a relevant node, then E is relevant
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C

A B

D

E

F

G



Where do BNs Come From?

• Handcrafted
• Interact with domain expert to identify dependencies among variables (causal 

structure) and quantify local distributions (CPTs)

• Empirical data with human expertise used as a guide 

• Recent emphasis on learning BNs directly from data
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