CS 486/686: Introduction to Artificial Intelligence Constraint Satisfaction

Outline

- What are Constraint Satisfaction Problems (CSPs)
- Standard Search and CSPs
- Leveraging problem structure Improvements

Introduction

Standard search

State is a "black box": arbitrary data structure

Goal test: any function over states

Successor function:

anything that lets you move from one state to another

Constraint satisfaction problems (CSPs)

A special subset of search problems

States are defined by *variables* X_i with values from *domains* D_i

Goal test is a *set of constraints* specifying allowable combinations of values for subsets of variables

Example: Map Colouring

Variables

V={T, V, NSW, Q, NT, WA, SA}

Domains

D={red, blue, green}

Constraints: adjacent regions must have different colours

```
Implicit: WA≠NT
```

```
Explicit: (WA, NT)∈ {(red, blue), (red, green), (blue, red)...}
```

Solution is an assignment satisfying all constraints

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

N Queens Problem

Variables: Xi,j

Domains: {0,1}

Constraints:

VOU	5				
				N.O.	
		8	NOV9		

 $\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$

N Queens Problem

Variables: Qi

Domains: {1,2,...,N}

Constraints:

Implicit:

 $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explict: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

. . .

3 Sat

Variables: V₁,..., V_n Domains: {0,1} Constraints:

K constraints of the form $V_i^* V V_j^* V V_k^* V_i^*$ where V_i^* is either V_i or $\neg V_i$

```
A \neg B \lor \neg C\neg A \lor B \lor DD \lor B \lor E\neg A \lor \neg B \lor C
```

A canonical NP-complete problem

Discrete Variables

Finite domains

If domain has size d, then there are O(dⁿ) complete assignments Boolean CSPs (including 3-SAT)

Infinite domains (e.g. integers)

Constraint languages

Linear constraints are solvable but non-linear are undecidable

Continuous Variables

Linear programming (linear constraints solvable in polynomial time)

Types of CSPs

Varieties of Constraints

Unary constraints: involve a single variable NSW≠red
Binary constraints: involve a pair of variables NSW≠Q
Higher-order constraints: involve more than two variables AllDiff(V₁,...,V_n)

Soft Constraints (preferences)

red "is better than" green Constrained optimization problems

Constraint Graphs

You can represent binary constraints with a constraint graph

Nodes are variables

Edges are constraints

CSPs and Search

We can use standard search to solve CSPs

States:

Initial State:

Successor Function:

Goal Test:

CSPs and Search

States:

Initial State:

Successor Function:

Goal Test:

What happens if we run something like BFS?

Commutativity

Key Insight: CSPS are commutative

- Order of actions does not effect outcome
- Can assign variables in any order

CSP algorithms take advantage of this

• Consider assignment of a single variable at each node in the tree

{WA=red, NT=blue} is equivalent to {NT=blue, WA=red}

Backtracking Search

Backtracking search is the basic algorithm for CSPs

Backtracking and Efficiency

Note that backtracking search is basically DFS with some small improvements. Can we improve on it further?

Ordering:

- Which variables should be tried first?
- In what order should a variable's values be tried?

Filtering:

• Can we detect failure early?

Structure:

• Can we exploit the problem structure?

Ordering: Most Constrained Variable

Choose the variable which has the fewest "legal" moves AKA minimum remaining values (MRV)

Ordering: Most Constraining Variable

Most constraining variable:

Choose variable with most constraints on remaining variables

Tie-breaker among most constrained variables

Ordering: Least-Constraining Value

Given a variable, choose the least constraining value:

The one that rules out the fewest values in the remaining variables

Filtering: Forward Checking

Forward checking:

Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

WA	NT	Q	NSW	V	SA	Т
RGB						

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	KGB	RGB	RGB	RGB	RGB	RGB
Forward checking removes the value Red of NI and of SA						

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	B	G	RGB	RGB	GB	RGB

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB
R	В	G	RB	В		RGB

Empty set: the current assignment $\{(WA \in R), (Q \in G), (V \in B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB
R	В	G	R	В	8	RGB

Filtering: Arc Consistency

Forward checking propagates information from assigned to unassigned variables, but it can not detect all future failures early

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB

NT and SA can not both be blue!

Need to reason about constraints

Filtering: Arc Consistency

Given domains D_1 and D_2 , an arc is consistent if for all x in D_1 there is a y in D_2 such that x and y are consistent.

Is the arc from SA to NSW consistent? Is the arc from NSW to SA consistent?

Structure: Independent Subproblems

Tasmania does not interact with the rest of the problem

Idea: Break down the graph into its connected components. Solve each component separately.

Significant potential savings:

- Assume n variables with domain size d: O(dⁿ)
- Assume each component involves c variables (n/c components) for some constant c: O(d^c n/c)

Structure: Tree Structures

CSPs can be solved in O(nd²) if there are no loops in the constraint graph

Step 1: For i=n to 1, make-consistent(Xi, parent(Xi))

Step 2: For i=1 to n, assign value to X_i consistent with parent(X_i) [Note: No backtracking!]

Structure: Non-Trees?

If we assign SA a colour and then remove that colour from the domains all other variables, then we have a tree

Step 1: Choose a subset S of variables such that the constraint graph becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S

- 1. Remove from the domains of remaining variables, all values that are inconsistent with S
- 2. If the remaining CSP has a solution, return it

Structure: Cutsets

Running time:

- Let c be the size of the cutset then
 - d^c combinations of variables in S
 - For each combination must solve a tree problem of size n-c (O(n-c)d²)
 - Therefore, running time is O(d^c(n-c)d²)
- Finding smallest cutset is NP-hard but efficient approximations exist

Structure: Non-Trees?

- 1. Each variable appears in at least one subproblem
- 2. If two variables are connected by a constraint, then they (and the constraint) must appear together in at least one subproblem
- 3. If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems

Structure: Tree Decompositions

Solve each subproblem independently

e.g {(WA=r,NT=g,SA=b),(WA=b, NT=g,SA=r),...}

Solve constraints connecting the subproblems using tree-based algorithm (to make sure that subproblems with shared variables agree)

Want to make the subproblems as small as possible! Tree width: w= Size of largest subproblem-1 Running time O(nd^{w+1})

Finding tree decomposition with min treewidth is NP-hard, but good heuristics exist

Summary

Formalize problems as CSPs Backtracking search Improvements using Ordering Filtering Structure