
CS 486/686: Introduction to 
Artificial Intelligence

Constraint Satisfaction



Outline

• What are Constraint Satisfaction Problems (CSPs)
• Standard Search and CSPs
• Leveraging problem structure - Improvements
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Introduction

Standard search
State is a “black box”: 

arbitrary data structure
Goal test: any function over 

states
Successor function: 

anything that lets you move 
from one state to another

Constraint satisfaction problems 
(CSPs)

A special subset of search 
problems

States are defined by variables 
Xi with values from domains Di

Goal test is a set of constraints 
specifying allowable 
combinations of values for 
subsets of variables 

3



Example: Map Colouring
Variables

V={T, V, NSW, Q, NT, WA, SA}
Domains

 D={red, blue, green}
Constraints: adjacent regions must have different 
colours

Implicit: WA≠NT
Explicit: (WA, NT)∈ {(red, blue), (red, green), (blue, 
red)…}

Solution is an assignment satisfying all constraints
{WA=red, NT=green, Q=red, NSW=green, V=red, 
SA=blue, T=green}
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N Queens Problem

Variables: Xi,j

Domains:  {0,1} 

Constraints: 
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N Queens Problem

Variables:  Qi

Domains: {1,2,…,N}

Constraints: 

Implicit: 

Explict:
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3 Sat
Variables: V1,…, Vn

Domains: {0,1}
Constraints:

K constraints of the form Vi*∨Vj*∨Vk* Vi* where Vi* is 
either Vi or ¬Vi

 

A canonical NP-complete
 problem
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Types of CSPs
Discrete Variables

Finite domains
If domain has size d, then there are O(dn) complete assignments
Boolean CSPs (including 3-SAT)

Infinite domains (e.g. integers)
Constraint languages
Linear constraints are solvable but non-linear are undecidable

Continuous Variables
Linear programming (linear constraints solvable in polynomial time)
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Types of CSPs
Varieties of Constraints

Unary constraints: involve a single variable
NSW≠red

Binary constraints: involve a pair of variables
NSW≠Q

Higher-order constraints: involve more than two variables
AllDiff(V1,…,Vn)

Soft Constraints (preferences)
red “is better than” green
Constrained optimization problems

9



Constraint Graphs

You can represent binary 
constraints with a constraint 
graph

Nodes are variables

Edges are constraints

T

WA

NT

SA

Q

NSW

V
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CSPs and Search
We can use standard search to solve CSPs
States: 
Initial State:
Successor Function: 
Goal Test:

T
WA

NT

SA

Q

NSW

V
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CSPs and Search

States: 
Initial State: 
Successor Function: 
Goal Test:

T

WA

NT

SA

Q

NSW

V

What happens if we run 
something like BFS?
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Commutativity
Key Insight: CSPS are 
commutative
• Order of actions does not effect 

outcome
• Can assign variables in any order

CSP algorithms take advantage 
of this
• Consider assignment of a single 

variable at each node in the tree

T
WA

NT

SA

Q

NSW

V

{WA=red, NT=blue} 
is equivalent to 
{NT=blue, WA=red}
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Select unassigned variable X
For each value {x1,...,xn} in domain of X

If value satisfies constraints, assign X=xi and exit loop

If an assignment is found
Move to next variable

If no assignment found
Back up to preceding variable and try a different assignment for it

Backtracking search is the basic algorithm for CSPs 

One variable at a 
time

Check constraints 
as you go

Backtracking Search
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Backtracking Example

0

T
WA

NT

SA

Q

NSW
V
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Backtracking Example

0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red
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Backtracking Example

0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green
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Backtracking Example

0

T
WA

NT

SA

Q

NSW
V

WA=blue WA=greenWA=red

NT=blue NT=red NT=green

SA=blue SA=red SA=green
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Backtracking and Efficiency
Note that backtracking search is basically DFS with some small improvements. 
Can we improve on it further?

Ordering:
• Which variables should be tried first?
• In what order should a variable’s values be tried?

Filtering:
• Can we detect failure early?

Structure:
• Can we exploit the problem structure?
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Ordering: Most Constrained Variable

Choose the variable which has the fewest “legal” moves
AKA minimum remaining values (MRV)

DNT={green, blue}

DSA={green, blue}
Dothers={red, green, blue}

DSA={blue}

DQ={blue, red}
Dothers={red,green,blue}
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Ordering: Most Constraining Variable
Most constraining variable:

Choose variable with most constraints on remaining variables

Tie-breaker among most constrained variables

SA is involved in 5 constraints
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Ordering: Least-Constraining Value

Given a variable, choose the least constraining value:

The one that rules out the fewest values in the remaining 
variables
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Filtering: Forward Checking

Forward checking:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
Forward checking removes the value Red of NT and of SA
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Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

26



Example: Forward Checking

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB
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Example: Forward Checking

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment 
     {(WA ß R), (Q ß G), (V ß B)}
does not lead to a solution
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Filtering: Arc Consistency
Forward checking propagates information from assigned to 
unassigned variables, but it can not detect all future 
failures early

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB

NT and SA can not 
both be blue! 

Need to reason 
about constraints
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Filtering: Arc Consistency
Given domains D1 and D2, an arc is consistent if for all 
x in D1 there is a y in D2 such that x and y are 
consistent.

NSWSA

DSA={blue} DNSW={blue,red}

Is the arc from SA to NSW consistent?
Is the arc from NSW to SA consistent?
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Structure: Independent Subproblems

Tasmania does not 
interact with the rest of 
the problem

Idea: Break down the graph into its 
connected components. Solve each 
component separately.

Significant potential savings: 
• Assume n variables with domain size d: O(dn)
• Assume each component involves c variables (n/c components) for 

some constant c: O(dc n/c)
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Structure: Tree Structures
CSPs can be solved in O(nd2) if there are no loops in the 
constraint graph

Topological 
Sort

Step 1: For i=n to 1, make-consistent(Xi,parent(Xi))

Step 2: For i=1 to n, assign value to Xi consistent with 
parent(Xi)  [Note: No backtracking!]
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Structure: Non-Trees?

If we assign SA a colour and 
then remove that colour 
from the domains all other 
variables, then we have a 
tree

Step 1: Choose a subset S of variables such that the constraint graph becomes a 
tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S
1. Remove from the domains of remaining variables, all values that are 

inconsistent with S
2. If the remaining CSP has a solution, return it
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Structure: Cutsets

Running time:
• Let c be the size of the cutset then
• dc combinations of variables in S
• For each combination must solve a tree problem of size n-c  (O(n-c)d2)
• Therefore, running time is O(dc(n-c)d2)

• Finding smallest cutset is NP-hard but efficient approximations exist
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Structure: Non-Trees?
Tree decompositions

1. Each variable appears in at least one subproblem
2. If two variables are connected by a constraint, then they (and the constraint) 

must appear together in at least one subproblem
3. If a variable appears in two subproblems in the tree, it must appear in every 

subproblem along the path connecting those subproblems
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Structure: Tree Decompositions

Solve each subproblem 
independently

e.g {(WA=r,NT=g,SA=b),(WA=b, 
NT=g,SA=r),…}

Solve constraints connecting the 
subproblems using tree-based 
algorithm (to make sure that 
subproblems with shared 
variables agree)

Want to make the subproblems as small as possible! 
Tree width: w= Size of largest subproblem-1
Running time O(ndw+1)

Finding tree decomposition with min tree-
width is NP-hard, but good heuristics exist
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Summary

Formalize problems as CSPs
Backtracking search
Improvements using

Ordering
Filtering 
Structure
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