
CS 486/686: Introduction to 
Artificial Intelligence

Informed Search



Outline

•Using knowledge
• Heuristics

•Best-first search
• Greedy best-first search
• A* search
• Variations of A*

•Back to heuristics

2



Last lecture

• Uninformed search uses no knowledge about the problem
• Expands nodes based on “distance” from start node (never looks ahead to 

goal)

• Pros
• Very general

• Cons
• Very expensive

• Non-judgmental
• Some are complete, some are not

3CS 486/686



Informed Search

We often have additional knowledge about the problem
• Knowledge is often merit of a node (value of a node)
• Example: Romania travel problem?

Different notions of merit
• Cost of solution
• Minimizing computation

4



Uninformed vs Informed Search

• Uninformed search expands 
nodes based on distance 
from start node, d(nstart, n)

• Why not expand on distance 
to goal, d(n,goal)?

5

…

b

?



Heuristics
A heuristic is a function that estimates the cost of reaching 
a goal from a given state

6

10

5

11.2

Adapted from UC Berkeley’s CS188 Course 

Examples:
• Euclidean distance
• Manhatten distance



Example

7 h(x)︸



Heuristics: Structure
• If h(n1)<h(n2)  we guess it is cheaper to reach the goal from n1 than 

n2
• We require h(n,goal)=0

8



Example: Best First search

9

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

heuristic 
function

path 
cost

Search strategy:  Expand the most promising 
node according to the heuristic 



Example: Best First Search

10

C

G
2

S BA
2 1

h=4 h=2 h=2.5

h=1

h=0

1
1



Best First Search Properties

• Complete?

• Optimal?

• Time complexity

• Space complexity

11

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

CS 486/686



A* Search

Observations
• Best first search ordered nodes by forward cost to goal, h(n)
• Uniform cost search ordered nodes by backward cost of path so far, g(n)

A* search
• Expand nodes in order f(n)=g(n)+h(n)

12



Example: A* search

13

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

heuristic 
function

path 
cost



When Should A* Terminate?

14

S

C

BA

DG h=2

h=3

h=1

h=7

1

7

1

1

17



A* and Revisiting States

15

S

C

BA

G
h=2

h=3h=7

1

1

1

2

7



Is A* Optimal?

16

S

A

G

1 1 1

3

h=6



Admissible Heuristics

A heuristic is admissible if 0≤ h(n)≤ h*(n) for all n, where h*(n) 
is the true shortest path cost from n to any goal state.

Admissible heuristics are optimistic. Note that (h)=0 is 
admissible.

17



Optimality of A*

If the heuristic is admissible then A* with tree search is 
optimal.

If we have a graph, then we require a stronger property for 
the heuristic function.

A heuristic is consistent if h(n) ≤cost(n,n’) +h’(n)

Almost any admissible heuristic will also be consistent.

18



A* is Optimally Efficient

Among all optimal algorithms that start at the same 
start node and use the same heuristic, A* expands the 
fewest nodes

CS 486/686 19



A* Search Properties

• Complete?

• Optimal?

• Time complexity

• Space complexity

20

…

b
1 node

b nodes

b2 nodes

bm nodes

m tiers

CS 486/686



Heuristic Functions

A good heuristic function can make all the difference!

How do we get heuristics?

21



8 Puzzle

• Relax the game
• Can move from A to B is A is 

next to B
• Can move from A to B if B is 

blank
• Can move from A to B

22



8 Puzzle

• Can move from A to B: (Misplaced Tile Heuristic, h1)
• Can move from A to B if B is next to A:(Manhatten Distance Heuristic, 

h2)

23

Dominating heuristic: Given heuristics h1(n) 
and h2(n), h2(n)  dominates h1(n) if 
∀𝑛 ℎ2 𝑛 ≥ ℎ1 𝑛 𝑎𝑛𝑑 ∃𝑛 ℎ2 𝑛 > ℎ1(𝑛)

Theorem: If h2(n) dominates h1(n), A* using 
h2(n) will never expand more nodes that A* 
using h1(n). 



8 Puzzle and Heuristics

24

Depth IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

8 6384 39 25

12 3644035 227 73

24 - 39135 1641



Designing Heuristics

• Relax the problem
• Precompute solution costs of subproblems and storing them in a 

pattern database
• Learning from experience with the problem class
• ...

25

Often there is a tradeoff between accuracy 
of your heuristic (and thus the amount of 
search) and the amount of computation 
you must do to compute it



Summary

•What you should know
• Thoroughly understand A*
•Be able to trace simple examples of A* execution
•Understand admissibility of heuristics
•Completeness, optimality

26



Some Things to Think About

• What is the relationship between A* search and Dijkstra’s algorithm?

• A* search can be very memory intensive. Can you think of some 
variants of A* search that might reduce the memory overhead?

27


