CS 486/686: Introduction to
Artificial Intelligence

Informed Search

Outline

* Using knowledge
* Heuristics

* Best-first search
* Greedy best-first search
* A* search
 Variations of A*

* Back to heuristics

Last lecture

e Uninformed search uses no knowledge about the problem

* Expands nodes based on “distance” from start node (never looks ahead to
goal)

* Pros
* Very general

* Cons
* \Very expensive

* Non-judgmental
* Some are complete, some are not

Informed Search

We often have additional knowledge about the problem

* Knowledge is often merit of a node (value of a node)
* Example: Romania travel problem?

Different notions of merit
e Cost of solution
* Minimizing computation

Uninformed vs Informed Search

e Uninformed search expands
nodes based on distance
from start node, d(nstart, n)

* Why not expand on distance
to goal, d(n,goal)?

Heuristics

A heuristic is a function that estimates the cost of reaching
a goal from a given state

Examples:
e Euclidean distance
e Manhatten distance

Adapted from UC Berkeley’s CS188 Course

Example

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Arad Eforie 161
Fagaras 178
Giurgiu 77
118 M Vaslui Hirsova 151
lasi 226
Timisoara Lugoj 244
142 Mehadia 241
1 Pitesti Neamt 234
Oradea 380
98 i Pitesti 98
Irsova . . e
™ Mehadia Urziceni Rimnicu Vilcea 193
75 86 Sibiu 253
Bucharest Timisoara 329
Dobreta [90 Urziceni 80
Craiova Eforie Vaslui 199
] Giurgiu Zerind 374

| hix)

Heuristics: Structure

 If h(n1)<h(n2) we guess it is cheaper to reach the goal from nl than
n2

* We require h(n,goal)=0

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
] Vaslui Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
. Pitesti 98
] Hirsova . . .
Urziceni Rimnicu Vilcea 193
86 Sibiu 253
Timisoara 329
Dobreta [Urziceni 80
Eforie Vaslui 199

™ Giurgiu Zerind 374

Example: Best First search

Search strategy: Expand the most promising
node according to the heuristic

heuristic

t//funcﬂon

h=4 h=3 h=2 h=1 h=0
S oA > B »|C oG

path 4
cost

Example: Best First Search

Best First Search Properties

 Complete?

1 node
b nodes

e Optimal?
b2 nodes
m tiers <

* Time complexity

b™ nodes

* Space complexity

A* Search

Observations
e Best first search ordered nodes by forward cost to goal, h(n)
e Uniform cost search ordered nodes by backward cost of path so far, g(n)

A* search
* Expand nodes in order f(n)=g(n)+h(n)

Example: A* search

heuristic
function
h=4 h=3 h=2 h=1 h=0
S > A » B > C G

When Should A* Terminate?

C

A* and Revisiting States

s A* Optimal?

Admissible Heuristics

A heuristic is admissible if 0< h(n)< h*(n) for all n, where h*(n)
is the true shortest path cost from n to any goal state.

Admissible heuristics are optimistic. Note that (h)=0 is
admissible.

Optimality of A*

If the heuristic is admissible then A* with tree search is
optimal.

If we have a graph, then we require a stronger property for
the heuristic function.

A heuristic is consistent if h(n) <cost(n,n’) +h’(n)

Almost any admissible heuristic will also be consistent.

A* is Optimally Efficient

Among all optimal algorithms that start at the same
start node and use the same heuristic, A* expands the
fewest nodes

A* Search Properties

1 node

 Complete?

b nodes

b2 nodes

e Optimal?

m tiers <

* Time complexity

b™ nodes

* Space complexity

20

Heuristic Functions

A good heuristic function can make all the difference!

How do we get heuristics?

8 Puzzle

* Relax the game ! 2 4 1
e Can move fromAtoBis Ais
next to B S 6 3 4
e Can move from AtoBifBis
blank 8 3 1 6 7

[J
Can move from Ato B Start State Goal State

22

8 PU 77 | e Dominating heuristic: Given heuristics h1(n)
and h2(n), h2(n) dominates h1l(n) if
vn h2(n) = hl1(n) and 3n h2(n) > h1(n)

71 2 ||l 2 1l 2 Theorem: If h2(n) dominates h1(n), A* using
h2(n) will never expand more nodes that A*

° ° S Il using h1(n).

8 [[| 3 ||| 1 6 ||| 7| 8

Start State Goal State

e Can move from A to B: (Misplaced Tile Heuristic, h1)

* Can move from A to B if B is next to A:(Manhatten Distance Heuristic,
h2)

23

8 Puzzle and Heuristics

Depth |IDS A*(h,) |A*(h,)
2 10 6 6

a 112 13 12

8 6384 39 25

12 3644035 |227 73

24 - 39135 |1641

24

Designing Heuristics

Relax the problem

Precompute solution costs of subproblems and storing them in a
pattern database

Learning from experience with the problem class

Often there is a tradeoff between accuracy
of your heuristic (and thus the amount of

search) and the amount of computation
you must do to compute it

25

Summary

* What you should know
* Thoroughly understand A*
* Be able to trace simple examples of A* execution
* Understand admissibility of heuristics
* Completeness, optimality

Some Things to Think About

* What is the relationship between A* search and Dijkstra’s algorithm?

* A* search can be very memory intensive. Can you think of some
variants of A* search that might reduce the memory overhead?

