
CS 486/686: Introduction to
Artificial Intelligence

Search

Plan for Today

• Uniformed Search Methods
• Thinking about the importance of abstractions

CS 486/686 F23 2

Introduction

Search was one of the first topics studied in AI
- Newell and Simon (1961) General Problem Solver

Central component to many AI systems
- Automated reasoning, theorem proving, robot navigation, scheduling,

game playing, machine learning...

Search Problems

• A search problem consists of
• a state space
• a successor function (actions, cost)

• a start state and a goal test
• A solution is a sequence of actions (plan) from the

start state to a goal state

(N, 1.0)

(E, 1.0)

Example: Traveling in Romania

Start

End

•States:

• Initial State:

•Successor
Function:

•Goal test:

•Solution:

Examples of Search Problems

States:

Initial State:

Successor
Function:

Goal test:

Solution:

States:

Initial State:

Successor
Function:

Goal test:

Solution:

Examples of Search Problems

Our Definition Excludes...

Chance

Continuous states

All of the above

Partial
Observability

Adversaries

What is is a state space?
The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
• Problem: Pathing

• States: (x,y) location
• Actions: NSEW
• Successor: update

location only
• Goal test: is

(x,y)=END

• Problem: Eat-All-Dots
• States: {(x,y), dot

booleans}
• Actions: NSEW
• Successor: update

location and possibly a
dot boolean

• Goal test: dots all falseAdapted from UC Berkeley’s CS188 Course

Representing Search

• State space graph
- Vertices correspond to states

(one vertex for each state)

- Edges correspond to successors

- Goal test is a set of goal nodes

• We search for a
solution by building
a search tree and
traversing it to find a
goal state

S

G

d

b

p
q

c

e

h

a

f

r

Search Tree
• A search tree:

• Start state is the root
of the tree

• Children are
successors

• A plan is a path in
the tree. A solution is
a path from the root
to a goal node.

• For most problems
we do not actually
generate the entire
tree

S

B

A

G

S

A B

GB G

G

Quiz
• Given this state graph, how large is the search

tree?

S

B

A

G

Expanding Nodes

Expanding a node:

Applying all legal operators to the state contained
in the node

Generating nodes for all corresponding successor
states

Example: Traveling in Romania

Start

End

Generic Search Algorithm
• Initialize with initial state of the problem

• Repeat
- If no candidate nodes can be expanded return

failure

- Choose leaf node for expansion, according to
search strategy

- If node contains goal state, return solution

- Otherwise, expand the node. Add resulting nodes
to the tree

Implementation Details

Search Strategies

S

G

d

b

p
q

c

e

h

a

f

r

Adapted from UC Berkeley’s CS188 Course

Search Strategies

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Depth-First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: Expand deepest node first
Implementation: LIFO stack

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Key Properties

• Completeness: Is the alg. guaranteed to find a
solution if the solution exists?

• Optimality: Does the alg. find the optimal solution?
• Time complexity

• Space complexity (size of the fringe) …
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

b: branching factor
m: maximum depth
d: depth of shallowest goal node

Number of nodes in tree? 1+b+b2+…+bm=O(bm)

DFS Properties

Complete?

Optimal?

Time complexity

Space complexity

…

b
1 node

b nodes

b2 nodes

bm nodes

m tiers

Breadth-First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: Expand shallowest node first
Implementation: FIFO queue

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

BFS Properties
• Complete?

• Optimal?

• Time complexity

• Space complexity

…

b
1 node

b nodes

b2 nodes

bm nodes

m tiers

Quiz: DFS vs BFS

…
b

…
b

Iterative Deepening Search
• Can we combine search methods to take

advantage of DFS space complexity and BFS
completeness/shallow solution advantage?

IDS Properties

• Complete?

• Optimal?

• Time complexity

• Space complexity

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Wasteful? Most nodes found in
lowest level of search so not too
bad

Cost-Sensitive Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Recall that BFS was only optimal under some conditions (i.e.
we only cared about number of actions taken). What can we
do if actions have different costs?

Uniform Cost Search

Strategy: Expand cheapest node first
Implementation: Priority queue

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

UCS Properties

• Complete?

• Optimal?

• Time complexity

• Space complexity

…

b

C*/𝜀𝜀 tiers

Summary

• These algorithms are basically the same except for the order in which
they expand nodes

• Basically all priority queues with different ways to determining priorities

• How successful the search is depends heavily on your model!

Questions?

• Next class: Informed search

	CS 486/686: Introduction to Artificial Intelligence
	Plan for Today
	Introduction
	Search Problems
	Example: Traveling in Romania
	Examples of Search Problems
	Examples of Search Problems
	Our Definition Excludes...
	What is is a state space?
	Representing Search
	Search Tree
	Quiz
	Expanding Nodes
	Example: Traveling in Romania
	Generic Search Algorithm
	Implementation Details
	Search Strategies
	Search Strategies
	Depth-First Search
	Key Properties
	DFS Properties
	Breadth-First Search
	BFS Properties
	Quiz: DFS vs BFS
	Iterative Deepening Search
	IDS Properties
	Cost-Sensitive Search
	Uniform Cost Search
	UCS Properties
	Summary
	Questions?

