Multiagent Systems: Intro to Game Theory

CS 486/686: Introduction to Artificial Intelligence

Introduction

- So far almost everything we have looked at has been in a single-agent setting
- Today - Multiagent Decision Making!
- For participants to act optimally, they must account for how others are going to act
- We want to
- Understand the ways in which agents interact and behave
- Design systems so that agents behave the way we would like them to

Hint for the final exam: MAS is my main research area. I like MAS problems. I even enjoy marking MAS questions. There will be a MAS question on the exam.

Self-Interest

- We will focus on self-interested MAS
- Self-interested does not necessarily mean
- Agents want to harm others
- Agents only care about things that benefit themselves
- Self-interested means
- Agents have their own description of states of the world
- Agents take actions based on these descriptions

What is Game Theory?

- The study of games!
- Bluffing in poker
- What move to make in chess
- How to play Rock-Paper-Scissors

But also

- auction design
- strategic deterrence
- election laws
- coaching decisions
- routing protocols

What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
- Group: Must have more than 1 decision maker
- Otherwise, you have a decision problem, not a game

What is Game Theory?

- Game theory is a formal way to analyze interactions among a group of rational agents that behave strategically
- Interaction: What one agent does directly affects at least one other
- Strategic: Agents take into account that their actions influence the game
- Rational: Agents chose their best actions

Example

- Decision Problem
- Everyone pays their own bill
- Game
- Before the meal, everyone decides to split the bill evenly

Strategic Game
 (Matrix Game, Normal Form Game)

- Set of agents: $\mathrm{I}=\{1,2, .,,, \mathrm{N}\}$
- Set of actions: $A_{i}=\left\{a_{i}{ }^{1}, \ldots, a_{i}{ }^{m}\right\}$
- Outcome of a game is defined by a profile $a=\left(a_{1}, \ldots, a_{n}\right)$
- Agents have preferences over outcomes
- Utility functions $u_{i}: A->R$

Examples

Agent 2

One Two

	One	$2,-2$
	Agent 1	$-3,3$
	Two	$-3,3$

Zero-sum game.
 $\sum_{i=1}{ }^{n} u_{i}(0)=0$

$\mathrm{I}=\{1,2\}$
$A_{i}=\{$ One,Two $\}$
A_{n} outcome is (One, Two)
$\mathrm{U}_{1}(($ One,Two $))=-3$ and $\mathrm{U}_{2}(($ One,Two $))=3$

Examples

Coordination Game

Chicken

	T	C
T	-1,-1	10,0
C	0,10	5,5

Anti-Coordination Game

Example: Prisoners' Dilemma

Playing a Game

- Agents are rational

- Let p_{i} be agent i 's belief about what its opponents will do
- Best response: $a_{i}=\operatorname{argmax} \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) p_{i}\left(a_{-i}\right)$

Notation Break: $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$

Dominated Strategies

- $a^{\prime}{ }_{i}$ strictly dominates strategy a_{i} if

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right)>u_{i}\left(a_{i}, a_{-i}\right) \forall a_{-i}
$$

- A rational agent will never play a dominated strategy!

Example

Confess Don't Confess

| Confess
 Don't
 Confess $-5,-5$
 $-10,0$ $0-1,-10$ |
| :--- | :--- | :--- |

Strict Dominance Does Not Capture the Whole Picture

	A	B	c
A	0,4	4,0	5,3
B	4,0	0,4	5,3
C	3,5	3,5	6,6

Nash Equilibrium

Key Insight: an agent's best-response depends on the actions of other agents

An action profile a* is a Nash equilibrium if no agent has incentive to change given that others do not change

$$
\forall i u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}^{*}\right) \forall a_{i}^{\prime}
$$

Nash Equilibrium

- Equivalently, a* is a N.E. iff

$$
\forall i a_{i}^{*}=\arg \max _{a_{i}} u_{i}\left(a_{i}, a_{-i}^{*}\right)
$$

	A	B	C
A	0,4	4,0	5,3
B	4,0	0,4	5,3
C	3,5	3,5	6,6

(C,C) is a N.E. because

$$
\begin{aligned}
& u_{1}(C, C)=\max \left[\begin{array}{l}
u_{1}(A, C) \\
u_{1}(B, C) \\
u_{1}(C, C)
\end{array}\right] \\
& \text { AND } \\
& u_{2}(C, C)=\max \left[\begin{array}{l}
u_{2}(C, A) \\
u_{2}(C, B) \\
u_{2}(C, C)
\end{array}\right]
\end{aligned}
$$

Nash Equilibrium

- If $\left(a_{1}{ }^{*}, a_{2}{ }^{*}\right)$ is a N.E. then player 1 won't want to change its action given player 2 is playing $a_{2} *$
- If $\left(a_{1}{ }^{*}, a_{2}{ }^{*}\right)$ is a N.E. then player 2 won't want to change its action given player 1 is playing $a_{1} *$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

	A	B	c
A	0,4	4,0	5,3
B	4,0	0,4	5,3
c	3,5	3,5	6,6

Another Example

B S

2 Nash Equilibria
Coordination Game

Yet Another Example

Agent 2

	One	Two
One	$2,-2$	$-3,3$
Agent 1 1-2,		
Two	$-3,3$	4,-4

(Mixed) Nash Equilibria

- (Mixed) Strategy: s_{i} is a probability distribution over A_{i}
- Strategy profile: $s=\left(s_{1}, \ldots, s_{n}\right)$
- Expected utility: $u_{i}(s)=\Sigma_{a} \Pi_{j} s\left(a_{j}\right) u_{i}(a)$
- Nash equilibrium: s^{*} is a (mixed) Nash equilibrium if

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \forall s_{i}^{\prime}
$$

Yet Another Example

\[

\]

How do we determine p and q ?

Yet Another Example

	q One		Two
	One	$2,-2$	$-3,3$
		$-3,3$	$4,-4$

How do we determine p and q ?

Exercise

	B	S
	2,1	0,0
	0,0	1,2

This game has 3 Nash Equilibrium (2 pure strategy NE and 1 mixed strategy NE).

Mixed Nash Equilibrium

- Theorem (Nash 1950): Every game in which the action sets are finite, has a mixed strategy equilibrium.

John Nash

Nobel Prize in Economics (1994)

Finding NE

- Existence proof is non-constructive
- Finding equilibria?
- 2 player zero-sum games can be represented as a linear program (polynomial)
- For arbitrary games, the problem is in PPAD
- \quad Finding equilibria with certain properties is often NP-hard

Repeated Games

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$
$-10,0$	$-1,-1$
$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

How do we define payoffs?
What is the strategy space?

Repeated Games

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

How do we define payoffs?
Average reward
Discounted Awards

Repeated Games

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

$-5,-5$	$0,-10$			
$-10,0$	$-1,-1$	\quad	$-5,-5$	$0,-10$
:---	:---	:---		
$-10,0$	$-1,-1$	\quad	$-5,-5$	$0,-10$
:---	:---	:---		
$-10,0$	$-1,-1$			

Strategy space becomes significantly larger!
$\mathrm{S}: \mathrm{H} \rightarrow \mathrm{A}$ where H is the history of play so far
Can now reward and punish past behaviour, worry about reputation, establish trust,...

Repeated Games

Recall the Prisonner's Dilemma. What if the prisoners are habitual criminals?

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

$-5,-5$	$0,-10$
$-10,0$	$-1,-1$

Grim Strategy: In first step cooperate. If opponent defects at some point, then defect forever

Tit-for-Tat: In first step cooperate. Copy what ever opponent did in previous stage.

Summary

Definition of a Normal Form Game

Dominant strategies
Nash Equilibria

