Reinforcement Learning

CS 486/686: Introduction to Artificial Intelligence

Outline

* What is reinforcement learning

e Multiarmed Bandits

What is RL?

* Reinforcement learning is learning what to do so as to
maximize a numerical reward signal

e Learner is not told what actions to take

* Learner discovers value of actions by
- Trying actions out

- Seeing what the reward is

What is RL?

* Another common learning framework is supervised
learning (we will see this later in the semester)

Supervised learning

Don't
touch. You
will get

Reinforcement learning

Ouch!

Reinforcement Learning Problem

Agent
State Reward Action
Environment
a0 al a2
sO sl S2

0 rl r2

Goal: Learn to choose actions that maximize roty ri+y2ro+..., where 0-<y <1

Example: Tic Tac Toe (or Backgammon or
Go...)

® State: Board configuration

® Actions: Next move

XS e ma— '
® Reward: 1 for a win, -1 for a e O X X

loss, O for a draw
Ol X

Mrw e
Wwele Jar s

I 2 < LN
ot e b

® pProblem: Find 1mt: S >A that e
maximizes the reward

TD-Gammon

I

i

|

estimated state value
(= prob of winning)

o
o
&
3
®

AR

Action selection
by a shallow search

JBQM\ 0 L T € ¥ S 9 L 8 6 O LEZH SLPEGE OLLI8E 8102 I2TT €T ¥T STeQE

Start with a random Network
Play millions of games against itself
L earn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

Example: AlphaGo

Policy network Value network

p,, @ls) v, ()

* Perceptions: state of the board
* Actions: legal moves
e Reward: +1 or -| at the end of the game

* Trained by playing games against itself
* Invented new ways of playing which seem superior

Example: Inverted Pendulem

® State: x(t), X'(t), B(t), ©’(t)
® Actions: Force F

® Reward: 1 for any step

where the pole is balanced | M |

® pProblem: Find r: S =>A that
maximizes the reward

Deep Learing Performance on Atari Games

o

o

St L
3 DX
o

Ju

o

™

2D WF DX

B
@
*
®
?
Q

3D 9F DX
2 93 IDX
3D WFIDX

D002k
105194
e sioN

Space Invaders Breakout Enduro

Reinforcement Learning
Characteristics

* Delayed reward

- Credit assignment problem
* Exploration and exploitation

* Possibility that a state is only partially observable

* Life-long learning

11

Reinforcement Learning Model

e Set of states S
e Set of actions A

* Set of reinforcement signals (rewards)

- Rewards may be delayed

Multi-Armed Bandits

The simplest reinforcement
learning problem is the
multi-armed bandit

Thanks to D. Precup

K-armed bandit

At each time step t, you choose an action A, from k possible
actions, and receive reward R,

The reward depends only on the action taken (it is i.i.d)

Q*(a) =3 [Rt‘At — Cl] , Va € {13 Cee k} true values

These true values are unknown, and the distribution is
unknown

Goal: Maximize your total reward

To achieve this goal you need to try actions to learn their
values (explore) and prefer those that appear best (exploit)

Exploration/Exploitation Tradeoff
Assume you had estimates

Qt (G) ~ (« (fl)j Va action-value estimates

Define the greedy action as

. = argmax Q¢(a)

If A=A* then you are exploiting
If A, ZA.* then you are exploring

You can’t do both but you need to do both

Action-Value Methods

Methods that learn action-value estimates and nothing
else

Estimate action values as sample averages:

: t—1
sum of rewards when a taken prior to t 21:1 Ri 14,—¢

Qt(a) = R RPN — t—1
number of times a taken prior to ¢ Zi:l 14.—q

The same average estimate will converge to true values
if the action is taken an infinite number of times

lim Qt(a) — Q*(a)

N¢(a)—o0

The number of times action a
has been taken by time ¢

e-Greedy Action Selection

In greedy action selection you always exploit

In e-greedy, you are usually greedy but with probability
€ you pick an action at random

This is a simple way of balancing exploration and
exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) « 0
Na) +0

Repeat forever:
4.) ATgmax, Q(a) with probability 1 —& (breaking ties randomly)
a random action with probability £
R + bandit(A)
N(A)+ N(A)+1
Q(A) + Q(A) + xixy [R — Q(A)]

A Ten-Armed Example (sutton and Barto)

Reward 0
distribution

Run for 1000 steps

-3 Repeat the whole
thing 2000 times
with different bandit

-4 tasks

e-Greedy Action Selection

9 0.1
£ =1,
P canS
e=001
1 L M o e
Average £ =0 (greedy)
reward

0.5

D | | | |

1 250 500 750 1000
Steps
1005z _
0% _|
o 6% |
Optimal
action 40w
¢ =0 (greedy)

20% |

[I""_;: | | | | |

1 250 500 750 1000

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) +0
N(a) « 0

Repeat forever:
A .) ATgmax, Q(a) with probability 1 —s (breaking ties randomly)
a random action with probability
R + bandit(A)
N(A)+ N(A)+1
Q(A) + Q(A) + iz [R - Q(A)]

Averaging and Learning Rules

Focussing on a single action so as to avoid notation issues

Note that our estimate of the value of taking some action is the
average reward collected by taking that action

Ry +Ro+---+ Ry
n = n—1

Can we compute this incrementally without storing all rewards to
date?

1

Qnir = Qut [Ra— Q]

Standard form for learning/update rules

NewEstimate <— OldEstimate + StepSize {Teu*gﬂt — Oh‘iEHtjﬂmrﬂ]

Derivation of the Update Rule

. Ri+Ry+---+ Ry

@n n—1

1 T
Qn-—l—l — ; Z Rta-'.

=1
1 n—1
— Rn R?’.
1 1
n (+(n }n —1

Non-Stationary Problems

What happens when the problem is non-stationary? (i.e.
the true values change over time)?

Sample average is not an appropriate technique

Instead, exponential, recency-weighted average

Qﬂ—|—1 = Qn. T |:Rn o (gn]

=(1—a)"Q1+ Y a(l—a)" 'R,
1—1

where o is a constant step-size parameter, o € (0, 1]

Convergence Conditions

* To ensure convergence with probability 1, we require

E (_.‘t".”_(ﬂj = OQ and E ﬂf‘i ((1) < 00
n=1 n=1
1
* eg, Xy, = ;
If ¥ — '”-_pi JL & (D _I_)
] .
* not a, = — then convergence is

at the optimal rate:

O(1/+/n)

Optimism and Bandits

* We need to start somewhere with Q1(a), which introduces a bias
* So far assumed Q1(a)=0

* We could be optimistic and initialize action values differently

(Q1(a)=5)

100%
optimistic, greedy y
80% Q,=5.€=0
% 60% realistic, e-greedy
Optimal ¢,=0,€=01
action 40% -

20%

u
0% =7 | | | I |

l 200 400 600 800 1000

Upper Confidence Bounds

We can reduce exploration over time by using optimism
Estimate an upper bound on the true action values
Select action with largest estimated upper bound

loo t
| . - = Y
A = argmax |Q¢(a) + ¢ v
) i t ('ﬂ)
15}) ' = . . [Y
LwEE' . ,-a':i Yy r"%«w‘r‘*"r"‘ e WAy UL Ak Fpag B T phich
it i
L
il
Average it
reward
0.5k
oy

1 1 L J
1 250 500 7ol 1004

Steps

Optimism in the Face of Uncertainty

p(Q)

:.:::-:_E_:::-:_E:::|::H::.“;¢...T:::D:_‘_:::D':H:::-_:E:::-iﬁ_: :. .' ;.is 3;:‘-:::3:!-':::q....4.;4.::;H::.II.J...II.I...,

What action should be picked?
The more uncertain we are about an action-value, the more important it is to
explore it since it could turn out to be the best action

D. Silver

Optimism in the Face of Uncertainty

After we have picked the blue action, we are more confident in its value. We are
now more likely to pick another action.

D. Silver

Upper Confidence Bounds

* We want to estimate an upper confidence U,(a) for each
action such that g*(a)<Q,(a)+U,(a)

* This depends on the number of times we have sampled
action a
* Small Nt(a) -> large Ut(a) (estimated value is inaccurate)
* Large Nt(a) -> small Ut(a) (estimated value is accurate)

* Select action maximizing Upper Confidence Bound

Ay = argmax | (a) + Ui(a)]

How to Determine the Bound

Theorem (Hoeffding's Inequality)

Aet Xi,....Xt be i.i.d. random variables in [0,1], and let
X: = % Zf_:l X be the sample mean. Then

P[E[X] > X +u] < e 2%

Apply bound to bandit awards

Plg*(a) > Q:(a) + Uy(a)] < e 2Ne(@)Ve(a)®

How to Calculate the UCB

Now we pick a probability p that exceeds value of the UCB and

solve for Ut(a)
p
— log P
2N¢(a

Reduce p as observe more rewards, e.g. p=t™

o) = 5%,

—QNI JUe(a

Summary

* Bandits are the simplest RL models and we will be
building on them

* Key challenge is the balance between exploration and
exploitation

